-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
64 lines (52 loc) · 2.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# train.py
import tensorflow as tf
from model import Transformer
from data_load import get_batch
from hparams import Hparams
import os
import logging
logging.basicConfig(level=logging.INFO)
def main():
# 1. 加载超参数
logging.info("# hparams")
hparams = Hparams()
parser = hparams.parser
hp = parser.parse_args()
# 2. 准备训练和验证数据
logging.info("# Prepare train/eval batches")
train_batches, num_train_batches, _ = get_batch(hp.train1, hp.train2,
hp.maxlen1, hp.maxlen2,
hp.vocab, hp.batch_size,
shuffle=True)
eval_batches, num_eval_batches, _ = get_batch(hp.eval1, hp.eval2,
100000, 100000,
hp.vocab, hp.batch_size,
shuffle=False)
# 3. 创建数据迭代器
iter = tf.data.Iterator.from_structure(train_batches.output_types, train_batches.output_shapes)
xs, ys = iter.get_next()
train_init_op = iter.make_initializer(train_batches)
eval_init_op = iter.make_initializer(eval_batches)
# 4. 加载模型
logging.info("# Load model")
model = Transformer(hp)
loss, train_op, global_step, train_summaries = model.train(xs, ys)
# 5. 开始训练
saver = tf.train.Saver(max_to_keep=hp.num_epochs)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter(hp.logdir, sess.graph)
sess.run(train_init_op) # 初始化迭代器
total_steps = hp.num_epochs * num_train_batches
for step in range(total_steps):
_, gs, summary = sess.run([train_op, global_step, train_summaries])
summary_writer.add_summary(summary, gs)
# 每完成一个 epoch,执行验证
if gs % num_train_batches == 0:
logging.info("Epoch {} done".format(gs // num_train_batches))
sess.run(eval_init_op) # 切换到验证集
sess.run([loss]) # 计算验证损失
summary_writer.close()
saver.save(sess, os.path.join(hp.logdir, 'model.ckpt'))
if __name__ == '__main__':
main()