-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpad.cpp
875 lines (773 loc) · 36.8 KB
/
pad.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
/******************************************************************************\
* Copyright (c) 2020-2024
* Author(s): Volker Fischer
******************************************************************************
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
\******************************************************************************/
#include "pad.h"
void Pad::setup(const int conf_Fs)
{
// set essential parameters
Fs = conf_Fs;
init_delay_value = static_cast<int>(init_delay_value_s * conf_Fs);
// initialize with default pad type and other defaults
set_pad_type(PD6);
midi_note = 127;
midi_note_rim = 127;
midi_note_open = 127;
midi_note_open_rim = 127;
midi_ctrl_ch = 4; // CC4, usually used for hi-hat
use_head_sensor_coupling = false;
use_second_rim = false;
init_delay_cnt = 0; // note that it resets value of set_pad_type above
initialize(); // do very first initialization without delay
}
void Pad::set_pad_type(const Epadtype new_pad_type)
{
// apply new pad type and set all parameters to the default values for that pad type
pad_settings.pad_type = new_pad_type;
apply_preset_pad_settings();
sched_init();
}
void Pad::manage_delayed_initialization()
{
// manage delayed initialization (make sure only one initialization for multiple quick settings changes)
if (init_delay_cnt > 0)
{
init_delay_cnt--;
if (init_delay_cnt == 0)
{
initialize();
}
}
}
void Pad::initialize()
{
// in case we have a coupled sensor pad, the number of head sensors is 4, where 3 sensor signals and one sum
number_head_sensors = use_head_sensor_coupling ? 4 : 1; // 1 or 4 head sensor inputs
// set algorithm parameters
const float threshold_db = 20 * log10(ADC_MAX_NOISE_AMPL) - 16.0f + pad_settings.velocity_threshold; // threshold range considering the maximum ADC noise level
threshold = pow(10.0f, threshold_db / 10); // linear power threshold
first_peak_diff_thresh = pow(10.0f, pad_settings.first_peak_diff_thresh_db / 10); // difference allowed between first peak and later peak in scan time
scan_time = round(pad_settings.scan_time_ms * 1e-3f * Fs); // scan time from first detected peak
pre_scan_time = round(pad_settings.pre_scan_time_ms * 1e-3f * Fs);
total_scan_time = scan_time + pre_scan_time; // includes pre-scan time
mask_time = round(pad_settings.mask_time_ms * 1e-3f * Fs); // mask time (e.g. 10 ms)
decay_len1 = round(pad_settings.decay_len1_ms * 1e-3f * Fs); // decay time 1 (e.g. 250 ms)
decay_len2 = round(pad_settings.decay_len2_ms * 1e-3f * Fs); // decay time 2 (e.g. 250 ms)
decay_len3 = round(pad_settings.decay_len3_ms * 1e-3f * Fs); // decay time 3 (e.g. 250 ms)
decay_len = decay_len1 + decay_len2 + decay_len3;
decay_fact = pow(10.0f, pad_settings.decay_fact_db / 10);
decay_mask_fact = pow(10.0f, pad_settings.mask_time_decay_fact_db / 10);
const float decay_grad1 = pad_settings.decay_grad_fact1 / Fs; // decay gradient factor 1
const float decay_grad2 = pad_settings.decay_grad_fact2 / Fs; // decay gradient factor 2
const float decay_grad3 = pad_settings.decay_grad_fact3 / Fs; // decay gradient factor 3
x_sq_hist_len = total_scan_time;
overload_hist_len = x_sq_hist_len;
decay_est_delay = round(pad_settings.decay_est_delay_ms * 1e-3f * Fs);
decay_est_len = round(pad_settings.decay_est_len_ms * 1e-3f * Fs);
decay_est_fact = pow(10.0f, pad_settings.decay_est_fact_db / 10);
rim_shot_threshold = pow(10.0f, (static_cast<float>(pad_settings.rim_shot_threshold) - 44) / 10); // linear rim shot threshold
rim_shot_window_len = round(pad_settings.rim_shot_window_len_ms * 1e-3f * Fs); // window length (e.g. 5 ms)
rim_shot_boost = pow(10.0f, static_cast<float>(pad_settings.rim_shot_boost) / 40); // boost / 4 -> dB value
rim_switch_threshold = -pow(10.0f, pad_settings.rim_shot_threshold / 10.0f); // rim switch linear threshold, where 10^(31/10)=1259 which is approx 4096/3 (10 bit ADC)
rim_switch_on_cnt_thresh = round(10.0f * 1e-3f * Fs); // number of on samples until we detect a choke
rim_max_power_low_limit = ADC_MAX_NOISE_AMPL * ADC_MAX_NOISE_AMPL / 31.0f; // lower limit on detected rim power, 15 dB below max noise amplitude
x_rim_hist_len = x_sq_hist_len + rim_shot_window_len;
cancellation_factor = static_cast<float>(pad_settings.cancellation) / 31.0f; // cancellation factor: range of 0.0..1.0
ctrl_history_len_half = ctrl_history_len / 2;
max_num_overloads = 3; // maximum allowed number of overloaded samples until the overload special case is activated
// The ESP32 ADC has 12 bits resulting in a range of 20*log10(2048)=66.2 dB.
// The sensitivity parameter shall be in the range of 0..31. This range should then be mapped to the
// maximum possible dynamic where sensitivity of 31 means that we have no dynamic at all and 0 means
// that we use the full possible ADC range.
const float max_velocity_range_db = 20 * log10(ADC_MAX_RANGE / 2) - threshold_db;
const float velocity_range_db = max_velocity_range_db * (32 - pad_settings.velocity_sensitivity) / 32;
// Consider MIDI curve (taken from RyoKosaka HelloDrum-arduino-Library: int HelloDrum::curve() function)
// by calculating three parameters: velocity_factor * x ^ velocity_exponent + velocity_offset.
// The approach is to use the original power-to-MIDI conversion function:
// ( 10 * log10 ( prev_hil_filt_val / threshold ) / velocity_range_db ) * 127
// and apply the MIDI curve:
// ( 126 / ( pow ( curve_param, 126 ) - 1 ) ) * ( pow ( curve_param, i - 1 ) - 1 ) + 1.
// After applying some calculations (see calc_midi_curve_parameters.pdf), we get the following parameters:
float curve_param = 1.018f; // this curve parameter comes close to what Roland is doing for "linear"
switch (pad_settings.curve_type)
{
case EXP1: curve_param *= 1.012f; break;
case EXP2: curve_param *= 1.017f; break;
case LOG1: curve_param *= 0.995f; break;
case LOG2: curve_param *= 0.987f; break;
default: /* LINEAR, nothing to do */ break;
}
velocity_factor = 126.0f / ((pow(curve_param, 126.0f) - 1) * curve_param *
pow(threshold, 1270.0f / velocity_range_db * log10(curve_param)));
velocity_exponent = 1270.0f / velocity_range_db * log10(curve_param);
velocity_offset = 1.0f - 126.0f / (pow(curve_param, 126.0f) - 1);
// The positional sensing MIDI assignment parameters are dependent on, e.g., the filter design
// parameters and cannot easily be derived from the ADC properties as is done for the velocity.
// Based on the measurement results with the PD120 pad, we tryed to derive some meaningful parameter ranges.
const float pos_threshold_db = pad_settings.pos_threshold; // gives us a threshold range of 0..31 dB
pos_threshold = pow(10.0f, pos_threshold_db / 10); // linear power threshold
const float max_pos_range_db = 11; // dB (found by analyzing pd120_pos_sense2.wav test signal)
pos_range_db = max_pos_range_db * (32 - pad_settings.pos_sensitivity) / 32;
// positional sensing for rim shots MIDI assignment parameters
const float rim_pos_threshold_db = pad_settings.rim_pos_threshold - 40; // gives us a threshold range of -40..-9 dB
rim_pos_threshold = pow(10.0f, rim_pos_threshold_db / 10); // linear power threshold
const float max_rim_pos_range_db = 11; // db (found by testing with PD-80R)
rim_pos_range_db = max_rim_pos_range_db * (32 - pad_settings.rim_pos_sensitivity) / 32;
// control MIDI assignment gives us a range of 410-2867 (FD-8: 3300-0, VH-12: 2200-1900 (press: 1770))
control_threshold = pad_settings.pos_threshold / 31.0f * (0.6f * ADC_MAX_RANGE) + (0.1f * ADC_MAX_RANGE);
control_range = (ADC_MAX_RANGE - control_threshold) * (32 - pad_settings.pos_sensitivity) / 32;
// hi-hat pedal stomp action parameters
ctrl_velocity_range_fact = pow(10.0f, pad_settings.velocity_sensitivity / 10.0f); // linear range of 1..1259
ctrl_velocity_threshold = pow(10.0f, pad_settings.velocity_threshold / 3.0f / 10.0f) - 1; // linear range of 0..10
// positional sensing low-pass filter properties
// moving average cut off frequency approximation according to:
// https://dsp.stackexchange.com/questions/9966/what-is-the-cut-off-frequency-of-a-moving-average-filter
const float lp_cutoff_norm = pad_settings.pos_low_pass_cutoff / Fs;
lp_filt_len = round(sqrt(0.196202f + lp_cutoff_norm * lp_cutoff_norm) / lp_cutoff_norm);
if ((lp_filt_len % 2) == 0)
{
lp_filt_len++; // make sure we have an odd length
}
const int lp_half_len = (lp_filt_len - 1) / 2;
x_low_hist_len = x_sq_hist_len + lp_filt_len;
// clipping compensation initialization
length_ampmap = 0;
for (int i = 0; i < max_length_ampmap; i++)
{
const float amp_map_val = pow(10.0f, (i * pad_settings.clip_comp_ampmap_step) * (i * pad_settings.clip_comp_ampmap_step));
// never to higher than 5 but at least two values
if ((length_ampmap < 2) || (amp_map_val <= 5.0f))
{
amplification_mapping[i] = amp_map_val;
length_ampmap++;
}
}
multi_head_sensor.initialize();
// allocate and initialize memory for vectors and initialize scalars
allocate_initialize(&rim_bp_filt_b, bp_filt_len); // rim band-pass filter coefficients b
allocate_initialize(&rim_bp_filt_a, bp_filt_len - 1); // rim band-pass filter coefficients a
allocate_initialize(&decay, decay_len); // memory for decay function
allocate_initialize(&lp_filt_b, lp_filt_len); // memory for low-pass filter coefficients
allocate_initialize(&ctrl_hist, ctrl_history_len); // memory for Hi-Hat control pad hit detection
prev_ctrl_value = 0;
for (int in = 0; in < number_head_sensors; in++)
{
SSensor& s = sSensor[in];
s.x_sq_hist.initialize(x_sq_hist_len); // memory for sqr(x) history
s.overload_hist.initialize(overload_hist_len); // memory for overload detection status
s.x_low_hist.initialize(x_low_hist_len); // memory for low-pass filter result
s.x_rim_switch_hist.initialize(rim_shot_window_len); // memory for rim switch detection
s.x_sec_rim_switch_hist.initialize(rim_shot_window_len); // memory for second rim switch detection
allocate_initialize(&s.bp_filt_hist_x, bp_filt_len); // band-pass filter x-signal history
allocate_initialize(&s.bp_filt_hist_y, bp_filt_len - 1); // band-pass filter y-signal history
allocate_initialize(&s.lp_filt_hist, lp_filt_len); // memory for low-pass filter input
allocate_initialize(&s.rim_bp_hist_x, bp_filt_len); // rim band-pass filter x-signal history
allocate_initialize(&s.rim_bp_hist_y, bp_filt_len - 1); // rim band-pass filter y-signal history
allocate_initialize(&s.x_rim_hist, x_rim_hist_len); // memory for rim shot detection
s.was_above_threshold = false;
s.is_overloaded_state = false;
s.mask_back_cnt = 0;
s.first_peak_val = 0.0f;
s.peak_val = 0.0f;
s.decay_back_cnt = 0;
s.decay_scaling = 1.0f;
s.scan_time_cnt = 0;
s.decay_pow_est_start_cnt = 0;
s.decay_pow_est_cnt = 0;
s.decay_pow_est_sum = 0.0f;
s.pos_sense_cnt = 0;
s.x_low_hist_idx = 0;
s.rim_shot_cnt = 0;
s.rim_switch_on_cnt = 0;
s.max_x_filt_val = 0.0f;
s.max_mask_x_filt_val = 0.0f;
s.was_peak_found = false;
s.was_pos_sense_ready = false;
s.was_rim_shot_ready = false;
s.rim_state = NO_RIM;
}
// calculate positional sensing low-pass filter coefficients
for (int i = 0; i < lp_filt_len; i++)
{
if (i < lp_half_len)
{
lp_filt_b[i] = (0.5f + i * 0.5f / lp_half_len) / lp_filt_len;
}
else if (i == lp_half_len)
{
lp_filt_b[i] = 1.0f / lp_filt_len;
}
else
{
lp_filt_b[i] = lp_filt_b[lp_filt_len - i - 1];
}
}
// calculate the decay curve
for (int i = 0; i < decay_len1; i++)
{
decay[i] = pow(10.0f, -i / 10.0f * decay_grad1);
}
const float decay_fact1 = pow(10.0f, -decay_len1 / 10.0f * decay_grad1);
for (int i = 0; i < decay_len2; i++)
{
decay[decay_len1 + i] = decay_fact1 * pow(10.0f, -i / 10.0f * decay_grad2);
}
const float decay_fact2 = decay_fact1 * pow(10.0f, -decay_len2 / 10.0f * decay_grad2);
for (int i = 0; i < decay_len3; i++)
{
decay[decay_len1 + decay_len2 + i] = decay_fact2 * pow(10.0f, -i / 10.0f * decay_grad3);
}
// select rim shot signal band-pass filter coefficients
if (pad_settings.rim_use_low_freq_bp)
{
for (int i = 0; i < bp_filt_len - 1; i++)
{
rim_bp_filt_a[i] = rim_bp_low_freq_a[i];
}
for (int i = 0; i < bp_filt_len; i++)
{
rim_bp_filt_b[i] = rim_bp_low_freq_b[i];
}
}
else
{
for (int i = 0; i < bp_filt_len - 1; i++)
{
rim_bp_filt_a[i] = rim_bp_high_freq_a[i];
}
for (int i = 0; i < bp_filt_len; i++)
{
rim_bp_filt_b[i] = rim_bp_high_freq_b[i];
}
}
}
float Pad::process_sample(const float* input,
const int input_len,
const int* overload_detected,
bool& peak_found,
int& midi_velocity,
int& midi_pos,
Erimstate& rim_state,
bool& is_choke_on,
bool& is_choke_off)
{
// initialize return parameters and configuration parameters
peak_found = false;
midi_velocity = 0;
midi_pos = 0;
rim_state = NO_RIM;
is_choke_on = false;
is_choke_off = false;
const bool pos_sense_is_used = pad_settings.pos_sense_is_used && (number_head_sensors == 1); // can be applied directly without calling initialize()
const bool rim_shot_is_used = pad_settings.rim_shot_is_used && (input_len > 1); // can be applied directly without calling initialize()
const bool pos_sense_inverted = pad_settings.pos_invert; // can be applied directly without calling initialize()
float x_filt = 0.0f; // needed for debugging
float cur_decay = 1; // needed for debugging, initialization value (0 dB) only used for debugging
bool sensor0_has_results = false;
manage_delayed_initialization();
for (int head_sensor_cnt = 0; head_sensor_cnt < number_head_sensors; head_sensor_cnt++)
{
const int in = head_sensor_cnt == 0 ? 0 : head_sensor_cnt + 1; // exclude rim input
SSensor& s = sSensor[head_sensor_cnt];
FastWriteFIFO& s_x_sq_hist = s.x_sq_hist; // shortcut for speed optimization
int& first_peak_delay = s.sResults.first_peak_delay; // use value in result struct
bool first_peak_found = false;
int peak_delay = 0;
first_peak_delay++; // increment first peak delay for each new sample (wraps only after some hours which is uncritical)
// square input signal and store in FIFO buffer
s_x_sq_hist.add(input[in] * input[in]);
s.overload_hist.add(overload_detected[in]);
// Calculate peak detection ---------------------------------------------------
// IIR band-pass filter
update_fifo(input[in], bp_filt_len, s.bp_filt_hist_x);
float sum_b = 0.0f;
float sum_a = 0.0f;
for (int i = 0; i < bp_filt_len; i++)
{
sum_b += s.bp_filt_hist_x[i] * bp_filt_b[i];
}
for (int i = 0; i < bp_filt_len - 1; i++)
{
sum_a += s.bp_filt_hist_y[i] * bp_filt_a[i];
}
x_filt = sum_b - sum_a;
update_fifo(x_filt, bp_filt_len - 1, s.bp_filt_hist_y);
x_filt = x_filt * x_filt; // calculate power of filter result
// exponential decay assumption
float x_filt_decay = x_filt;
if (s.decay_back_cnt > 0)
{
// subtract decay (with clipping at zero)
cur_decay = s.decay_scaling * decay[decay_len - s.decay_back_cnt];
x_filt_decay = x_filt - cur_decay;
s.decay_back_cnt--;
if (x_filt_decay < 0.0f)
{
x_filt_decay = 0.0f;
}
}
// during the mask time we apply a constant value to the decay way above the
// detected peak to avoid missing a loud hit which is preceeded with a very
// low volume hit which mask period would delete the loud hit
if ((s.mask_back_cnt > 0) && (s.mask_back_cnt <= mask_time))
{
if (x_filt > s.max_mask_x_filt_val * decay_mask_fact)
{
s.was_above_threshold = false; // reset the peak detection (note that x_filt_decay is always > threshold now)
x_filt_decay = x_filt; // remove decay subtraction
s.pos_sense_cnt = 0; // needed since we reset the peak detection
s.was_pos_sense_ready = false; // needed since we reset the peak detection
s.rim_shot_cnt = 0; // needed since we reset the peak detection
s.was_rim_shot_ready = false; // needed since we reset the peak detection
}
}
// threshold test
if (((x_filt_decay > threshold) || s.was_above_threshold))
{
// initializations at the time when the signal was above threshold for the
// first time for the current peak
if (!s.was_above_threshold)
{
s.decay_pow_est_start_cnt = max(1, decay_est_delay - x_filt_delay + 1);
s.scan_time_cnt = max(1, scan_time - x_filt_delay);
s.mask_back_cnt = scan_time + mask_time;
s.decay_back_cnt = 0; // reset in case it was active from previous peak
s.max_x_filt_val = x_filt; // initialize maximum value with first value
s.max_mask_x_filt_val = x_filt; // initialize maximum value with first value
s.is_overloaded_state = false;
// this flag ensures that we always enter the if condition after the very first
// time the signal was above the threshold (this flag is then reset when the
// scan time is expired)
s.was_above_threshold = true;
}
// search from above threshold to corrected scan+mask time for highest peak in
// filtered signal (needed for decay power estimation)
if (x_filt > s.max_x_filt_val)
{
s.max_x_filt_val = x_filt;
}
// search from above threshold in scan time region needed for decay mask factor
if ((s.mask_back_cnt > mask_time) && (x_filt > s.max_mask_x_filt_val))
{
s.max_mask_x_filt_val = x_filt;
}
s.scan_time_cnt--;
s.mask_back_cnt--;
// end condition of scan time
if (s.scan_time_cnt == 0)
{
// climb to the maximum of the first peak (using the unfiltered signal)
first_peak_found = false;
s.first_peak_val = s_x_sq_hist[x_sq_hist_len - total_scan_time];
int first_peak_idx = 0;
for (int idx = 1; idx < total_scan_time; idx++)
{
const float cur_x_sq_hist_val = s_x_sq_hist[x_sq_hist_len - total_scan_time + idx];
const float prev_x_sq_hist_val = s_x_sq_hist[x_sq_hist_len - total_scan_time + idx - 1];
if ((s.first_peak_val < cur_x_sq_hist_val) && !first_peak_found)
{
s.first_peak_val = cur_x_sq_hist_val;
first_peak_idx = idx;
}
else
{
first_peak_found = true;
// check if there is a much larger first peak
if ((prev_x_sq_hist_val > cur_x_sq_hist_val) && (s.first_peak_val * first_peak_diff_thresh < prev_x_sq_hist_val))
{
s.first_peak_val = prev_x_sq_hist_val;
first_peak_idx = idx - 1;
}
}
}
// calculate sub-sample first peak value
if (number_head_sensors > 1)
{
multi_head_sensor.calculate_subsample_peak_value(s_x_sq_hist,
x_sq_hist_len,
total_scan_time,
first_peak_idx,
s.sResults.first_peak_sub_sample);
}
// get the maximum velocity in the scan time using the unfiltered signal
s.peak_val = 0.0f;
int peak_velocity_idx = 0;
for (int i = 0; i < scan_time; i++)
{
if (s_x_sq_hist[x_sq_hist_len - scan_time + i] > s.peak_val)
{
s.peak_val = s_x_sq_hist[x_sq_hist_len - scan_time + i];
peak_velocity_idx = i;
}
}
// peak detection results
peak_delay = scan_time - (peak_velocity_idx + 1);
first_peak_delay = total_scan_time - (first_peak_idx + 1);
first_peak_found = true; // for special case signal only increments, the peak found would be false -> correct this
s.was_peak_found = true;
// overload correction
overload_correction(s_x_sq_hist,
s.overload_hist,
first_peak_idx,
peak_velocity_idx,
s.is_overloaded_state,
s.peak_val);
}
// end condition of mask time
if (s.mask_back_cnt == 0)
{
s.decay_back_cnt = decay_len; // per definition decay starts right after mask time
s.decay_scaling = decay_fact * s.max_x_filt_val; // take maximum of filtered signal in scan+mask time
s.was_above_threshold = false;
}
}
// decay power estimation
if (s.decay_pow_est_start_cnt > 0)
{
s.decay_pow_est_start_cnt--;
// end condition
if (s.decay_pow_est_start_cnt == 0)
{
s.decay_pow_est_cnt = decay_est_len; // now the power estimation can start
}
}
if (s.decay_pow_est_cnt > 0)
{
s.decay_pow_est_sum += x_filt; // sum up the powers in pre-defined interval
s.decay_pow_est_cnt--;
// end condition
if (s.decay_pow_est_cnt == 0)
{
const float decay_power = s.decay_pow_est_sum / decay_est_len; // calculate average power
s.decay_pow_est_sum = 0.0f; // we have to reset the sum for the next calculation
s.decay_scaling = min(s.decay_scaling, decay_est_fact * decay_power); // adjust the decay curve
}
}
// Calculate positional sensing -----------------------------------------------
if (pos_sense_is_used)
{
// low pass filter of the input signal and store results in a FIFO
update_fifo(input[in], lp_filt_len, s.lp_filt_hist);
float x_low = 0.0f;
for (int i = 0; i < lp_filt_len; i++)
{
x_low += (s.lp_filt_hist[i] * lp_filt_b[i]);
}
s.x_low_hist.add(x_low * x_low);
// start condition of delay process to fill up the required buffers
if (first_peak_found && (!s.was_pos_sense_ready) && (s.pos_sense_cnt == 0))
{
// a peak was found, we now have to start the delay process to fill up the
// required buffer length for our metric
s.pos_sense_cnt = max(1, lp_filt_len - first_peak_delay);
s.x_low_hist_idx = x_low_hist_len - lp_filt_len - max(0, first_peak_delay - lp_filt_len + 1);
}
if (s.pos_sense_cnt > 0)
{
s.pos_sense_cnt--;
// end condition
if (s.pos_sense_cnt == 0)
{
// the buffers are filled, now calculate the metric
float peak_energy_low = 0.0f;
for (int i = 0; i < lp_filt_len; i++)
{
peak_energy_low = max(peak_energy_low, s.x_low_hist[s.x_low_hist_idx + i]);
}
if (pos_sense_inverted)
{
// add offset (dB) to get to similar range as non-inverted metric
s.pos_sense_metric = peak_energy_low / s.first_peak_val * 10000.0f;
}
else
{
s.pos_sense_metric = s.first_peak_val / peak_energy_low;
}
s.was_pos_sense_ready = true;
}
}
}
// Calculate rim shot/choke detection -----------------------------------------
if (rim_shot_is_used)
{
if (get_is_rim_switch())
{
// as a quick hack we re-use the length parameter for the switch on detection
const bool rim_switch_on = (input[1] < rim_switch_threshold);
s.x_rim_switch_hist.add(rim_switch_on);
if (use_second_rim && (input_len > 2))
{
// the second rim signal is on third input signal
s.x_sec_rim_switch_hist.add(input[2] < rim_switch_threshold);
}
// at the end of the scan time search the history buffer for any switch on
if (s.was_peak_found)
{
s.rim_state = NO_RIM;
int num_neighbor_switch_on = 0;
for (int i = 0; i < rim_shot_window_len; i++)
{
if (s.x_rim_switch_hist[i] > 0)
{
num_neighbor_switch_on++;
// On the ESP32, we had seen crosstalk between head/rim inputs. To avoid that the interference
// signal from the head triggers the rim, we check that we have at least two neighbor samples
// above the rim threshold (the switch keeps on longer than the piezo signal)
if (num_neighbor_switch_on >= 2)
{
s.rim_state = RIM_SHOT;
}
}
else
{
num_neighbor_switch_on = 0;
}
}
// support second rim switch (usually the bell on a ride cymbal)
if (use_second_rim)
{
int num_neighbor_second_switch_on = 0;
for (int i = 0; i < rim_shot_window_len; i++)
{
if (s.x_sec_rim_switch_hist[i] > 0)
{
num_neighbor_second_switch_on++;
// (see comment above for normal rim switch regarding this condition)
if (num_neighbor_second_switch_on >= 2)
{
// re-use rim-only enum for second rim switch, overwrites RIM_SHOT state
s.rim_state = RIM_ONLY;
}
}
else
{
num_neighbor_second_switch_on = 0;
}
}
}
s.was_rim_shot_ready = true;
}
// choke detection
if (rim_switch_on)
{
s.rim_switch_on_cnt++;
}
else
{
// if choke switch on was detected, send choke off message now
if (s.rim_switch_on_cnt > rim_switch_on_cnt_thresh)
{
is_choke_off = true;
}
s.rim_switch_on_cnt = 0;
}
// only send choke on message once we detected a choke (i.e. do not test for ">" threshold but for "==")
if (s.rim_switch_on_cnt == rim_switch_on_cnt_thresh)
{
is_choke_on = true;
}
}
else
{
// band-pass filter the rim signal (two types are supported)
update_fifo(input[1], bp_filt_len, s.rim_bp_hist_x);
float sum_b = 0.0f;
float sum_a = 0.0f;
for (int i = 0; i < bp_filt_len; i++)
{
sum_b += s.rim_bp_hist_x[i] * rim_bp_filt_b[i];
}
for (int i = 0; i < bp_filt_len - 1; i++)
{
sum_a += s.rim_bp_hist_y[i] * rim_bp_filt_a[i];
}
float x_rim_bp = sum_b - sum_a;
update_fifo(x_rim_bp, bp_filt_len - 1, s.rim_bp_hist_y);
x_rim_bp = x_rim_bp * x_rim_bp; // calculate power of filter result
update_fifo(x_rim_bp, x_rim_hist_len, s.x_rim_hist);
// start condition of delay process to fill up the required buffers
if (s.was_peak_found && (!s.was_rim_shot_ready) && (s.rim_shot_cnt == 0))
{
// a peak was found, we now have to start the delay process to fill up the
// required buffer length for our metric
s.rim_shot_cnt = max(1, rim_shot_window_len - peak_delay);
s.x_rim_hist_idx = x_rim_hist_len - rim_shot_window_len - max(0, peak_delay - rim_shot_window_len + 1);
}
if (s.rim_shot_cnt > 0)
{
s.rim_shot_cnt--;
// end condition
if (s.rim_shot_cnt == 0)
{
// the buffers are filled, now calculate the metric
float rim_max_pow = 0;
for (int i = 0; i < rim_shot_window_len; i++)
{
rim_max_pow = max(rim_max_pow, s.x_rim_hist[s.x_rim_hist_idx + i]);
}
const float rim_metric = rim_max_pow / s.peak_val;
const bool is_rim_shot = (rim_metric > rim_shot_threshold) && (rim_max_pow > rim_max_power_low_limit);
s.rim_state = is_rim_shot ? RIM_SHOT : NO_RIM;
s.rim_shot_cnt = 0;
s.was_rim_shot_ready = true;
// rim power is assumed to be constant for each rim shot but distance to center mounted piezo
// will change power and therefore the rim metric can be used for positional sensing for rim shots
s.rim_pos_sense_metric = rim_metric;
}
}
}
}
// check for all estimations are ready and we can set the peak found flag and
// return all results
if (s.was_peak_found && (!pos_sense_is_used || s.was_pos_sense_ready) && (!rim_shot_is_used || s.was_rim_shot_ready))
{
// apply rim shot velocity boost
// TODO rim shot boost is only supported for single head sensors pads -> support multiple head sensor pads, too
if ((s.rim_state == RIM_SHOT) && (number_head_sensors == 1))
{
s.peak_val *= rim_shot_boost;
}
// calculate the MIDI velocity value with clipping to allowed MIDI value range
int current_midi_velocity = static_cast<int>(velocity_factor * pow(s.peak_val * ADC_noise_peak_velocity_scaling, velocity_exponent) + velocity_offset);
current_midi_velocity = max(1, min(127, current_midi_velocity));
// positional sensing MIDI mapping with clipping to allowed MIDI value range
int current_midi_pos = static_cast<int>((10 * log10(s.pos_sense_metric / pos_threshold) / pos_range_db) * 127);
current_midi_pos = max(0, min(127, current_midi_pos));
// positional sensing must be adjusted if a rim shot is detected (note that this must be done BEFORE the MIDI clipping!)
if (s.rim_state != NO_RIM)
{
// positional sensing for rim shots (no rim only and side stick) is only supported for rim piezos
if ((s.rim_state == RIM_SHOT) && !get_is_rim_switch())
{
// rim shot positional sensing MIDI mapping with clipping to allowed MIDI value range
current_midi_pos = static_cast<int>((10 * log10(s.rim_pos_sense_metric / rim_pos_threshold) / rim_pos_range_db) * 127);
current_midi_pos = max(0, min(127, current_midi_pos));
}
else
{
current_midi_pos = 0; // rim shot positional sensing not supported
}
}
// in case of signal clipping, we cannot use the positional sensing results (overloads will
// only happen if the strike is located near the middle of the pad)
if (s.is_overloaded_state)
{
current_midi_pos = 0; // set to middle position
}
if (number_head_sensors == 1)
{
// normal case: only one head sensor -> use detection results directly
midi_velocity = current_midi_velocity;
midi_pos = current_midi_pos;
peak_found = true;
rim_state = s.rim_state;
}
else
{
s.sResults.midi_velocity = current_midi_velocity;
s.sResults.midi_pos = current_midi_pos;
s.sResults.rim_state = s.rim_state;
if (head_sensor_cnt == 0)
{
sensor0_has_results = true;
}
}
s.was_peak_found = false;
s.was_pos_sense_ready = false;
s.was_rim_shot_ready = false;
DEBUG_START_PLOTTING();
}
}
// signal processing for multiple head sensor pads
if (number_head_sensors > 1)
{
multi_head_sensor.calculate(sSensor,
sensor0_has_results,
number_head_sensors,
pad_settings.pos_sensitivity,
pad_settings.pos_threshold,
peak_found,
midi_velocity,
midi_pos,
rim_state);
}
DEBUG_ADD_VALUES(input[0] * input[0], x_filt, sSensor[0].scan_time_cnt > 0 ? 0.5 : sSensor[0].mask_back_cnt > 0 ? 0.2
: cur_decay,
threshold);
return x_filt; // here, you can return debugging values for verification with Ocatve
}
void Pad::process_control_sample(const int* input,
bool& change_found,
int& midi_ctrl_value,
bool& peak_found,
int& midi_velocity)
{
manage_delayed_initialization();
// map the input value to the MIDI range
int cur_midi_ctrl_value = ((ADC_MAX_RANGE - input[0] - control_threshold) / control_range * 127);
cur_midi_ctrl_value = max(0, min(127, cur_midi_ctrl_value));
// Detect pedal stomp --------------------------------------------------------
update_fifo(cur_midi_ctrl_value, ctrl_history_len, ctrl_hist);
// to cope with ADC noise, we use a moving average filter for noise reduction
float prev_ctrl_average = 0.0f;
float cur_ctrl_average = 0.0f;
for (int i = 0; i < ctrl_history_len_half; i++)
{
prev_ctrl_average += ctrl_hist[i]; // use first half for previous value
cur_ctrl_average += ctrl_hist[i + ctrl_history_len_half]; // use second half for current value
}
prev_ctrl_average /= ctrl_history_len_half;
cur_ctrl_average /= ctrl_history_len_half;
// check if we just crossed the transition from open to close
if ((prev_ctrl_average < hi_hat_is_open_MIDI_threshold) &&
(cur_ctrl_average >= hi_hat_is_open_MIDI_threshold))
{
// calculate the gradient which is the measure for the pedal stomp velocity
const float ctrl_gradient = (cur_ctrl_average - prev_ctrl_average) / ctrl_history_len_half;
// only send MIDI note for pedal stomp if we are above the given threshold
if (ctrl_gradient > ctrl_velocity_threshold)
{
// map curve difference (gradient) to velocity
midi_velocity = min(127, max(1, static_cast<int>((ctrl_gradient - ctrl_velocity_threshold) * ctrl_velocity_range_fact)));
peak_found = true;
// reset the history after a detection to suppress multiple detections
for (int i = 0; i < ctrl_history_len; i++)
{
ctrl_hist[i] = hi_hat_is_open_MIDI_threshold;
}
}
}
// Introduce hysteresis to avoid sending too many MIDI control messages ------
change_found = false;
if ((cur_midi_ctrl_value > (prev_ctrl_value + control_midi_hysteresis)) ||
(cur_midi_ctrl_value < (prev_ctrl_value - control_midi_hysteresis)))
{
// clip border values to max/min
if (cur_midi_ctrl_value < control_midi_hysteresis)
{
midi_ctrl_value = 0;
}
else if (cur_midi_ctrl_value > 127 - control_midi_hysteresis)
{
midi_ctrl_value = 127;
}
else
{
midi_ctrl_value = cur_midi_ctrl_value;
}
change_found = true;
prev_ctrl_value = midi_ctrl_value;
}
}