-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadam.html
366 lines (335 loc) · 20.1 KB
/
adam.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>
ADAM - Analysis of Dynamic Algebraic Models
</title>
<link rel="stylesheet" href="adam_style.css" type="text/css" media="screen">
<link href="uploadify/uploadify.css" type="text/css" rel="stylesheet">
<script type="text/javascript" src="jquery-1.4.4.min.js">
</script>
<script type="text/javascript" src="uploadify/swfobject.js">
</script>
<script type="text/javascript" src="uploadify/jquery.uploadify.v2.1.4.min.js">
</script>
<script type="text/javascript" src="adam.js">
</script>
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-11219893-8']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type =
'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ?
'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(ga, s);
})();
</script>
</head>
<body>
<div id="header"></div>
<div id="main">
<div class="nav"></div>
<div>
ADAM uses a combination of simulation and mathematical algorithms to analyze the dynamics of discrete biological systems. It can analyze bounded <b>Petri-nets</b> (generated with <a href="http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html">Snoopy</a>), <b>Logical Models</b> (in <a href="http://gin.univ-mrs.fr/">GINSim</a> format), <b>Polynomial Dynamical Systems (PDS)</b>, <b>open Polynomial Dynamical Systems (oPDS)</b>, <b>Probabilistic Boolean (or multistate) Networks</b>, <b>Stochastic Discrete Dynamical Systems (SDDS)</b>, and <b>open Stochastic Discrete Dynamical Systems (oSDDS)</b>. For small enough networks (deterministic or probabilistic), ADAM simulates the complete state space of the model and finds all attractors (steady states and limit cycles) together with statistics about the size of components. For larger networks, ADAM computes fixed points for both deterministic and probabilistic networks, and limit cycle of the length specified by the user for deterministic networks. You can follow our <a href="steptutorial.pl">step-by-step tutorial</a> or read the <a href="userGuide.pl" target="_blank">user guide</a>. It is important that you follow the format specified in the guide. Make your selections and provide inputs (if any) in the form below and click <i>Analyze</i> to run the software. To generate a model from experimental time course data, you can use <a href="http://polymath.vbi.vt.edu/polynome">Polynome</a>.<br>
<br>
</div>
<form>
<table>
<tr valign="top">
<td class="titleBox" colspan="2">
<strong><font color="black">1)</font></strong>
</td>
</tr>
<tr class="lines">
<td colspan="2"></td>
</tr>
<tr valign="top">
<td>
<b>I want to</b><br>
<input type="radio" name="choice_box" value="build">build a new model from experimental data;<br>
<input type="radio" name="choice_box" value="analyze" checked="checked">analyze an existing model;
</td>
<td>
<div class="explain" id="explain_build">
<b>Build new model</b>: Build a new model based on your experimental data.
</div>
<div class="explain" id="explain_analyze">
<b>Analyze existing model</b>: Enter an existing model here. You can then analyze it for its long term behavior, and for small enough models obtain a picture of the phase space.
</div>
</td>
</tr>
<tr valign="top">
<td class="titleBox" colspan="2">
<strong><font color="black">2)</font></strong>
</td>
</tr>
<tr class="lines">
<td colspan="2"></td>
</tr>
<tr valign="top">
<td>
<div class="input" id="build">
Build your model from transition tables.<br>
<input type="checkbox" name="continuous" value="continuous">Continuous
</div>
<div class="input" id="analyze">
<strong>Model Type</strong><br>
<input type="radio" name="inputType" value="PDS" checked="checked">Polynomial Dynamical Systems (PDS)<br>
<input type="radio"name="inputType"value="oPDS">Open Polynomial Dynamical System (oPDS)<br>
<input type="radio" name="inputType" value="BN">Boolean Network<br>
<input type="radio" name="inputType" value="pPDS">Probabilistic Polynomial Dynamical Systems (pPDS)<br>
<!--<input type="radio" name="inputType" value="PBN">Probabilistic Boolean Network (PBN)<br> -->
<input type="radio" name="inputType" value="Petrinet">Petri Net (Snoopy file)<br>
<input type="radio" name="inputType" value="GINsim">Logical Model (GINsim file)<br>
<input type="radio"name="inputType"value="SDDS">Stochastic Discrete Dynamical Systems (SDDS)<br>
<input type="radio"name="inputType"value="oSDDS">Open Stochastic Discrete Dynamical Systems (oSDDS)<br>
</div>
<div class="input optionfield pvalue">
Enter number of states per node: <input type="text" name="p_value" id="p_value" value="2" size="2" maxlength="2"><br>
</div>
<div class="input optionfield" id="kbound">
Enter the k-bound: <input type="text" name="k_bound" value="2" size="2" maxlength="2"><br>
</div>
</td>
<td>
<div class="explain" id="explain_mt_build">
Enter the transition table based on your experimental data for each variable to obtain a polynomial dynamical systems. A table, where the top row consists of the names of the variables, the other rows are the inputs states at time t, and the right most column is the output value at time (t+1). Missing rows are assumed to have output value 0. Entries should be separated by white space. When <i>continuous</i> is checked, there will not be any <i>jumps</i> in the generated model, i.e., every variable changes its value by at most 1 at every time step.
</div>
<div class="explain" id="explain_mt_analyze">
You can enter a polynomial dynamical systems (PDS), an open polynomial dynamical systems (oPDS), a probabilistic polynomial dynamical systems (or probabilistic Boolean network), a Petri net generated with Snoopy, a logical model generated with GINsim, a stochastic discrete dynamical systems (SDDS), or an open Stochastic Discrete Dynamical Systems (oSDDS).<br>
<div class="explain type" id="explain_BN">
<b>Boolean network</b>: Converts GINsim file to a polynomial system that ADAM will then proceed to analyze. Also outputs the variables and the converted system. Files must be ginml files, if you have an archive (zginml), please unzip it first.
</div>
<div class="explain type" id="explain_GINsim">
<b>GINsim File</b>: Converts GINsim file to a polynomial system that ADAM will then proceed to analyze. Also outputs the variables and the converted system. Files must be ginml files, if you have an archive (zginml), please unzip it first.
</div>
<div class="explain type" id="explain_PDS">
<b>PDS</b>: Polynomial Dynamical Systems. Operations are interpreted as polynomial addition and multiplication.
</div>
<!--<b>PBN</b>: Probabilistic Boolean Networks. Each nodes has several update rules, at each iteration, one is picked at random<br>-->
<div class="explain type" id="explain_pPDS">
<b>pPDS</b>: Probabilistic Polynomial Dynamical Systems. Each nodes has several update rules, at each iteration, one is picked at random.
</div>
<div class="explain type" id="explain_Petrinet">
<b>Petri Net</b>: A (standard) Petri net generated with Snoopy. The Petri net must be <b><i>k</i>-bounded</b>, and <i>k</i> must be entered on the left. This is an experimental feature, if you want to analyze the dynamics of the network, please copy and paste the generated PDS into ADAM.
</div>
<div class="explain type" id="explain_SDDS">
<br>
<b>SDDS</b>: Stochastic Discrete Dynamical Systems is a useful tool to generate and analyze mathematical models in systems biology, and it is suitable for cell population simulation. The inputs for SDDS: a file for the (complete) transition table or functions, propensity matrix, an initial state, nodes of interest, the number of states, the number of steps, and the number of simulations. <a href="models/SDDSexamples/Stochasticp53Mdm2.html"target="_blank">See an example...</a>
</div>
<div class="explain type" id="explain_oPDS">
<br>
<b>oPDS</b>: Open Polynomial Dynamical Systems is used to analyze the (deterministic) open system, which interacts with its environment, under different environmental conditions. In addition to PDS, the user should specify the external parameters that the system interacts with. Update functions can have some external parameters.
</div>
<div class="explain type" id="explain_oSDDS">
<br>
<b>oSDDS</b>: Open Stochastic Discrete Dynamical Systems is a useful tool to analyze the (stochastic) open models, which interacts with its environment, under different environmental conditions. In addition to SDDS, the user should enter a file for functions, and specify the external parameters that the system interacts with. Update functions can have some external parameters.
</div>
</div>
<div class="input optionfield pvalue">
<br>
The <i>number of states</i> indicates the maximum number of different discrete values your variables can take on. This number must be a prime number. If it is not, please enter the next largest prime.<br>
</div>
</td>
</tr>
<tr valign="top">
<td class="titleBox" colspan="2">
<strong><font color="black">3)</font></strong>
</td>
</tr>
<tr class="lines">
<td colspan="2"></td>
</tr>
<tr>
<td>
<font size="3"><strong>Model Input:</strong><br><br>
<div class="file_explanation"id="file_exp_sdds">
<br>File for the transition table/functions (.txt):<br>
</div>
<div class="file_explanation"id="file_exp_opds">
Upload a file (.txt) for the polynomials corresponding to
<br>the system OR enter them directly into the text area:
<br><br>
</div>
<div class="file_explanation"id="file_exp_osdds">
<br>File for the functions (.txt):<br>
</div>
<input type="file" id="upload_file" name="upload_file"value="what">
<br><br>
<textarea name="edit_functions" rows="8" cols="50" id="inputArea"></textarea>
<div class="entries"id="sdds_entries">
The propensity matrix: <br><textarea name="propensityMatrix" rows="12" cols="15" id="pm"></textarea><br><br>
Initial state : <input type="text"name="initialState"id="initialState" value="0 1" size="40" maxlength="100"><br><br>
Nodes of interest : <input type="text"name="interestingNodes"value="1, 2" size="40" maxlength="20"><br><br>
Number of states : <input type="text"name="num_states"value="2"size="22.5" maxlength="2"><br><br>
Number of steps : <input type="text"name="num_steps"value="50"size="22.9" maxlength="10"><br><br>
Number of simulations : <input type="text"name="num_simulations"value="100"size="16.95" maxlength="10"><br>
</font>
</div>
<div class="entries"id="osdds_entries">
The external parameters: <br><textarea name="externalParameters-osdds" rows="6" cols="15" id="epArea-osdds"></textarea><br><br>
The propensity matrix: <br><textarea name="propensityMatrix-osdds" rows="6" cols="15" id="pm-osdds"></textarea><br><br>
Initial state : <input type="text"name="initialState-osdds"id="initialState" value="0 1" size="40" maxlength="100"><br><br>
Nodes of interest : <input type="text"name="interestingNodes-osdds"value="1, 2" size="40" maxlength="20"><br><br>
Number of states : <input type="text"name="num_states-osdds"value="2"size="22.5" maxlength="2"><br><br>
Number of steps : <input type="text"name="num_steps-osdds"value="50"size="22.9" maxlength="10"><br><br>
Number of simulations : <input type="text"name="num_simulations-osdds"value="100"size="16.95" maxlength="10"><br>
</font>
</div>
</td>
<td>
<div class="explain" id="explain_mi">
Upload a file or enter it directly into the text area.
</div>
<div class="explain" id="explain_mi_sdds">
<br>
Either the <b>transition table</b> or <b>functions</b> must be uploaded. The <b>transition table</b> (<a href="models/SDDSexamples/example_tt.txt"target="_blank">e.g.</a>) must contain all possible states. In each row, the states must be seperated by an arrow, -> , and each variable in a state must be seperated by a space. The format for each line is: 0 0 -> 1 0. On the other hand, the <b>functions</b> (<a href="models/SDDSexamples/example_func.txt"target="_blank">e.g.</a>) must be the updating function of each node. f1, f2, f3,... represent the functions, whereas x1,x2,... represent the nodes in the system. <br>
<br>
In the <b>propensity matrix</b>, the number of rows must be equal to the number of nodes, the number of columns must be 2 (the first column is for activation and the second column is for degradation), and each propensity entries must be seperated by a space. For random simulations, each entry should be 0.5. The format for each row is: 0.3 0.7. <br>
<br>
The <b>initial state</b> is the starting point for all trajectories, and it must be separated by a space. The format is: 0 1. <br>
<br>
The <b>nodes of interest</b> are the ones of which you would like to see the behavior in the plot of cell population simulation. It must be seperated by a comma and the number of these nodes cannot be more than 5. The format is: 1, 2. <br>
<br>
The <b>number of states</b> which indicates the maximum number of different discrete values your variables can take on. This number must be a prime number. If the function file is uploaded and the number of discrete values is not a prime number, please enter the next largest prime; this is not valid if the transition table is used. <br>
<br>
The <b>number of steps</b> which indicates how many states a trajectory must have after the initial state. For instance, if the number of steps is 3, then the trajectory consists of 4 states and the first state in the trajectory is the initial state. <br>
<br>
The <b>number of simulations</b> which determines how many simulations is needed for the system. If you would like to see only 1 cell population simulation, then the number of simulations should be 1. <br>
<br>
</div>
<div class="explain" id="explain_mi_osdds">
<br>
The file for <b>functions</b> must be uploaded. The <b>functions</b> (<a href="ymodels/SDDSexamples/example_func.txt"target="_blank">e.g.</a>) must be the update function of each node. f1, f2, f3,... represent the functions, whereas x1,x2,... represent the nodes in the system. Since it is an open system, external parameters may appear in the functions.<br>
<br>
<b>External parameters</b> should be entered directly into the text area. There must be only one external parameter for each line.<br>
<br>
In the <b>propensity matrix</b>, the number of rows must be equal to the number of nodes, the number of columns must be 2 (the first column is for activation and the second column is for degradation), and each propensity entries must be seperated by a space. For random simulations, each entry should be 0.5. The format for each row is: 0.3 0.7. <br>
<br>
The <b>initial state</b> is the starting point for all trajectories, and it must be separated by a space. The format is: 0 1. <br>
<br>
The <b>nodes of interest</b> are the ones of which you would like to see the behavior in the plot of cell population simulation. It must be seperated by a comma and the number of these nodes cannot be more than 5. The format is: 1, 2. <br>
<br>
The <b>number of states</b> which indicates the maximum number of different discrete values your variables can take on. This number must be a prime number. If the function file is uploaded and the number of discrete values is not a prime number, please enter the next largest prime; this is not valid if the transition table is used. <br>
<br>
The <b>number of steps</b> which indicates how many states a trajectory must have after the initial state. For instance, if the number of steps is 3, then the trajectory consists of 4 states and the first state in the trajectory is the initial state. <br>
<br>
The <b>number of simulations</b> which determines how many simulations is needed for the system. If you would like to see only 1 cell population simulation, then the number of simulations should be 1. <br>
<br>
</div>
<div class="entries"id="opds_entries">
<br>
<br>
<br>
<br>
<br>
Enter external parameters directly into
<br>the text area; one for each line:<br><br>
<textarea name="externalParameters" rows="8" cols="20" id="epArea"></textarea><br>
</div>
</td>
</tr>
<tr valign="top" class="input option">
<td class="titleBox" colspan="2">
<strong><font color="black">4)</font></strong>
</td>
</tr>
<tr class="lines input option">
<td colspan="2"></td>
</tr>
<tr class="input option">
<td colspan="2">
<div class="input option" id="option">
<strong>What analysis would you like to run?</strong><br>
<div class="input optionfield" id="Simulation">
<input type="radio" name="anaysis_method" value="Simulation">Simulation of all trajectories (< 20 nodes )<br>
</div>
<div class="input optionfield" id="Algorithms">
<input type="radio" name="anaysis_method" value="Algorithms" checked="checked">Algorithms (suggested for nodes > 20)
</div>
<div class="input optionfield" id="conjunctive">
<input type="radio" name="anaysis_method" value="Conjunctive">The network I entered is conjuntive (or disjunctive) and I would like to make use of an efficient algorithm for these kind of networks.
</div>
<div class="input optionfield" id="sdds_graph">
<input type="radio" name="anaysis_method" value="sdds_graph">Plot of cell population simulation and Histogram for probability distribution
</div>
<div class="optionfield">
Would you like to see a<br>
<input class="input option" type="checkbox" name="depgraph" value="Dependency graph" checked>Dependency graph <select name="DGformat">
<option value="*.gif">
*.gif
</option>
<option value="*.jpg">
*.jpg
</option>
<option value="*.png">
*.png
</option>
<option value="*.ps">
*.ps
</option>
</select><br>
<div class='input option' id="statespace">
<input type="checkbox" name="statespace" value="State space graph" checked>State space graph <select name="SSformat">
<option value="*.gif">
*.gif
</option>
<option value="*.jpg">
*.jpg
</option>
<option value="*.png">
*.png
</option>
<option value="*.ps">
*.ps
</option>
</select>
</div>
</div>
<div class='input option optionfield' id="feedback">
<input type="checkbox" name="feedback" value="Feedback Circuit">Feedback Circuit<br>
</div>
<div class='input option optionfield' name="probabilities" id="probabilities">
<input type="checkbox" name="stochastic" value="Print probabilities" checked label="Print probabilities">Print probabilities<br>
</div>
<div class='input option optionfield' name="SteadyStates" id="SteadyStates">
<input type="checkbox" name="SteadyStates" value="Print Steady States">Print Steady States<br>
</div>
<div class='input option optionfield' name="TransitionMatrix" id="TransitionMatrix"> <input type="checkbox" name="TransitionMatrix" value="Print Transition Matrix">Print Probability Transition Matrix<br>
</div>
</div>
</td>
</tr>
<tr valign="top">
<td class="titleBox" colspan="2">
<strong><font color="black"></font></strong>
</td>
</tr>
<tr class="lines">
<td colspan="2"></td>
</tr>
</table>
<center>
<button type="button" id="analyze">Analyze</button>
</center>
</form>
<div id="result"></div>
</div>
<div class="nav"></div>
<div id="footer"></div>
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script><script type="text/javascript">
try{
var pageTracker = _gat._getTracker("UA-11219893-5");
pageTracker._trackPageview();
} catch(err) {}
</script>
</body>
</html>