|
6 | 6 | "description": "This recipe provides a blueprint for developers to create their own AI-powered chat applications using Streamlit.", |
7 | 7 | "name": "ChatBot", |
8 | 8 | "repository": "https://github.com/containers/ai-lab-recipes", |
9 | | - "ref": "v1.5.0", |
| 9 | + "ref": "v1.6.0", |
10 | 10 | "icon": "natural-language-processing", |
11 | 11 | "categories": ["natural-language-processing"], |
12 | 12 | "basedir": "recipes/natural_language_processing/chatbot", |
|
27 | 27 | "description": "This recipe provides a blueprint for developers to create their own AI-powered chat applications with the pydantic framework using Streamlit", |
28 | 28 | "name": "Chatbot PydanticAI", |
29 | 29 | "repository": "https://github.com/containers/ai-lab-recipes", |
30 | | - "ref": "v1.5.0", |
| 30 | + "ref": "v1.6.0", |
31 | 31 | "icon": "natural-language-processing", |
32 | 32 | "categories": ["natural-language-processing"], |
33 | 33 | "basedir": "recipes/natural_language_processing/chatbot-pydantic-ai", |
|
42 | 42 | "description": "This recipe guides into creating custom LLM-powered summarization applications using Streamlit.", |
43 | 43 | "name": "Summarizer", |
44 | 44 | "repository": "https://github.com/containers/ai-lab-recipes", |
45 | | - "ref": "v1.5.0", |
| 45 | + "ref": "v1.6.0", |
46 | 46 | "icon": "natural-language-processing", |
47 | 47 | "categories": ["natural-language-processing"], |
48 | 48 | "basedir": "recipes/natural_language_processing/summarizer", |
|
63 | 63 | "description": "This recipes showcases how to leverage LLM to build your own custom code generation application.", |
64 | 64 | "name": "Code Generation", |
65 | 65 | "repository": "https://github.com/containers/ai-lab-recipes", |
66 | | - "ref": "v1.5.0", |
| 66 | + "ref": "v1.6.0", |
67 | 67 | "icon": "generator", |
68 | 68 | "categories": ["natural-language-processing"], |
69 | 69 | "basedir": "recipes/natural_language_processing/codegen", |
|
83 | 83 | "description": "This application illustrates how to integrate RAG (Retrieval Augmented Generation) into LLM applications enabling to interact with your own documents.", |
84 | 84 | "name": "RAG Chatbot", |
85 | 85 | "repository": "https://github.com/containers/ai-lab-recipes", |
86 | | - "ref": "v1.5.0", |
| 86 | + "ref": "v1.6.0", |
87 | 87 | "icon": "natural-language-processing", |
88 | 88 | "categories": ["natural-language-processing"], |
89 | 89 | "basedir": "recipes/natural_language_processing/rag", |
|
104 | 104 | "description": "This application illustrates how to integrate RAG (Retrieval Augmented Generation) into LLM applications written in Node.js enabling to interact with your own documents.", |
105 | 105 | "name": "Node.js RAG Chatbot", |
106 | 106 | "repository": "https://github.com/containers/ai-lab-recipes", |
107 | | - "ref": "v1.5.0", |
| 107 | + "ref": "v1.6.0", |
108 | 108 | "icon": "natural-language-processing", |
109 | 109 | "categories": ["natural-language-processing"], |
110 | 110 | "basedir": "recipes/natural_language_processing/rag-nodejs", |
|
125 | 125 | "description": "This is a Java Quarkus-based recipe demonstrating how to create an AI-powered chat applications.", |
126 | 126 | "name": "Java-based ChatBot (Quarkus)", |
127 | 127 | "repository": "https://github.com/containers/ai-lab-recipes", |
128 | | - "ref": "v1.5.0", |
| 128 | + "ref": "v1.6.0", |
129 | 129 | "icon": "natural-language-processing", |
130 | 130 | "categories": ["natural-language-processing"], |
131 | 131 | "basedir": "recipes/natural_language_processing/chatbot-java-quarkus", |
|
146 | 146 | "description": "This is a NodeJS based recipe demonstrating how to create an AI-powered chat applications.", |
147 | 147 | "name": "Node.js based ChatBot", |
148 | 148 | "repository": "https://github.com/containers/ai-lab-recipes", |
149 | | - "ref": "v1.5.0", |
| 149 | + "ref": "v1.6.0", |
150 | 150 | "icon": "natural-language-processing", |
151 | 151 | "categories": ["natural-language-processing"], |
152 | 152 | "basedir": "recipes/natural_language_processing/chatbot-nodejs", |
|
167 | 167 | "description": "This recipes guides into multiple function calling use cases, showing the ability to structure data and chain multiple tasks, using Streamlit.", |
168 | 168 | "name": "Function calling", |
169 | 169 | "repository": "https://github.com/containers/ai-lab-recipes", |
170 | | - "ref": "v1.5.0", |
| 170 | + "ref": "v1.6.0", |
171 | 171 | "icon": "natural-language-processing", |
172 | 172 | "categories": ["natural-language-processing"], |
173 | 173 | "basedir": "recipes/natural_language_processing/function_calling", |
|
182 | 182 | "description": "This recipes guides into multiple function calling use cases, showing the ability to structure data and chain multiple tasks, using Streamlit.", |
183 | 183 | "name": "Node.js Function calling", |
184 | 184 | "repository": "https://github.com/containers/ai-lab-recipes", |
185 | | - "ref": "main", |
| 185 | + "ref": "v1.6.0", |
186 | 186 | "icon": "natural-language-processing", |
187 | 187 | "categories": ["natural-language-processing"], |
188 | 188 | "basedir": "recipes/natural_language_processing/function-calling-nodejs", |
|
197 | 197 | "description": "This demo provides a recipe to build out a custom Graph RAG (Graph Retrieval Augmented Generation) application using the repo LightRag which abstracts Microsoft's GraphRag implementation. It consists of two main components; the Model Service, and the AI Application with a built in Database.", |
198 | 198 | "name": "Graph RAG Chat Application", |
199 | 199 | "repository": "https://github.com/containers/ai-lab-recipes", |
200 | | - "ref": "53def1030a84ad3dc07deee6e02d905efd5e6d59", |
| 200 | + "ref": "v1.6.0", |
201 | 201 | "icon": "natural-language-processing", |
202 | 202 | "categories": ["natural-language-processing"], |
203 | 203 | "basedir": "recipes/natural_language_processing/graph-rag", |
|
212 | 212 | "description": "This application demonstrate how to use LLM for transcripting an audio into text.", |
213 | 213 | "name": "Audio to Text", |
214 | 214 | "repository": "https://github.com/containers/ai-lab-recipes", |
215 | | - "ref": "v1.5.0", |
| 215 | + "ref": "v1.6.0", |
216 | 216 | "icon": "generator", |
217 | 217 | "categories": ["audio"], |
218 | 218 | "basedir": "recipes/audio/audio_to_text", |
|
227 | 227 | "description": "This recipe illustrates how to use LLM to interact with images and build object detection applications.", |
228 | 228 | "name": "Object Detection", |
229 | 229 | "repository": "https://github.com/containers/ai-lab-recipes", |
230 | | - "ref": "v1.5.0", |
| 230 | + "ref": "v1.6.0", |
231 | 231 | "icon": "generator", |
232 | 232 | "categories": ["computer-vision"], |
233 | 233 | "basedir": "recipes/computer_vision/object_detection", |
|
0 commit comments