From c2d073ecbf3669d48de71b45246cc2c29b88dfca Mon Sep 17 00:00:00 2001 From: chaObserv <154517000+chaObserv@users.noreply.github.com> Date: Wed, 15 Oct 2025 11:21:43 +0800 Subject: [PATCH 1/2] Add TemporalScoreRescaling node --- comfy_extras/nodes_eps.py | 95 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 95 insertions(+) diff --git a/comfy_extras/nodes_eps.py b/comfy_extras/nodes_eps.py index 7852d85e5aca..bbd2978304d9 100644 --- a/comfy_extras/nodes_eps.py +++ b/comfy_extras/nodes_eps.py @@ -1,5 +1,7 @@ +import torch from typing_extensions import override +from comfy.k_diffusion.sampling import sigma_to_half_log_snr from comfy_api.latest import ComfyExtension, io @@ -63,12 +65,105 @@ def epsilon_scaling_function(args): return io.NodeOutput(model_clone) +def compute_tsr_rescaling_factor( + snr: torch.Tensor, tsr_k: float, tsr_variance: float +) -> torch.Tensor: + """Compute the rescaling score ratio in Temporal Score Rescaling. + + See equation (6) in https://arxiv.org/pdf/2510.01184v1. + """ + posinf_mask = torch.isposinf(snr) + rescaling_factor = (snr * tsr_variance + 1) / (snr * tsr_variance / tsr_k + 1) + return torch.where(posinf_mask, tsr_k, rescaling_factor) # when snr → inf, r = tsr_k + + +class TemporalScoreRescaling(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="TemporalScoreRescaling", + display_name="TSR - Temporal Score Rescaling", + category="model_patches/unet", + inputs=[ + io.Model.Input("model"), + io.Float.Input( + "tsr_k", + tooltip=( + "Controls the rescaling strength.\n" + "Lower k produces more detailed results; higher k produces smoother results. Setting k = 1 disables rescaling." + ), + default=0.95, + min=0.01, + max=100.0, + step=0.001, + display_mode=io.NumberDisplay.number, + ), + io.Float.Input( + "tsr_sigma", + tooltip=( + "Controls how early rescaling takes effect.\n" + "Larger values take effect earlier." + ), + default=1.0, + min=0.01, + max=100.0, + step=0.001, + display_mode=io.NumberDisplay.number, + ), + ], + outputs=[ + io.Model.Output( + display_name="patched_model", + ), + ], + description=( + "[Post-CFG Function]\n" + "TSR - Temporal Score Rescaling (2510.01184)\n\n" + "Rescaling the model's score or noise to steer the sampling diversity.\n" + ), + ) + + @classmethod + def execute(cls, model, tsr_k, tsr_sigma) -> io.NodeOutput: + tsr_variance = tsr_sigma**2 + + def temporal_score_rescaling(args): + denoised = args["denoised"] + x = args["input"] + sigma = args["sigma"] + curr_model = args["model"] + + # No rescaling (r = 1) or no noise + if tsr_k == 1 or sigma == 0: + return denoised + + model_sampling = curr_model.current_patcher.get_model_object("model_sampling") + half_log_snr = sigma_to_half_log_snr(sigma, model_sampling) + snr = (2 * half_log_snr).exp() + + # No rescaling needed (r = 1) + if snr == 0: + return denoised + + rescaling_r = compute_tsr_rescaling_factor(snr, tsr_k, tsr_variance) + + # Derived from scaled_denoised = (x - r * sigma * noise) / alpha + alpha = sigma * half_log_snr.exp() + return torch.lerp(x / alpha, denoised, rescaling_r) + + m = model.clone() + m.set_model_sampler_post_cfg_function(temporal_score_rescaling) + return io.NodeOutput(m) + + class EpsilonScalingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ EpsilonScaling, + TemporalScoreRescaling, ] + async def comfy_entrypoint() -> EpsilonScalingExtension: return EpsilonScalingExtension() From fbf9e0063a2f1ba7378ab3a994e458e2c3b5cbf9 Mon Sep 17 00:00:00 2001 From: chaObserv <154517000+chaObserv@users.noreply.github.com> Date: Wed, 15 Oct 2025 22:40:38 +0800 Subject: [PATCH 2/2] Mention image generation in tsr_k's tooltip --- comfy_extras/nodes_eps.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_eps.py b/comfy_extras/nodes_eps.py index bbd2978304d9..4d80617419ca 100644 --- a/comfy_extras/nodes_eps.py +++ b/comfy_extras/nodes_eps.py @@ -90,7 +90,7 @@ def define_schema(cls): "tsr_k", tooltip=( "Controls the rescaling strength.\n" - "Lower k produces more detailed results; higher k produces smoother results. Setting k = 1 disables rescaling." + "Lower k produces more detailed results; higher k produces smoother results in image generation. Setting k = 1 disables rescaling." ), default=0.95, min=0.01,