|
| 1 | +# TCFG: Tangential Damping Classifier-free Guidance - (arXiv: https://arxiv.org/abs/2503.18137) |
| 2 | + |
| 3 | +import torch |
| 4 | + |
| 5 | +from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict |
| 6 | + |
| 7 | + |
| 8 | +def score_tangential_damping(cond_score: torch.Tensor, uncond_score: torch.Tensor) -> torch.Tensor: |
| 9 | + """Drop tangential components from uncond score to align with cond score.""" |
| 10 | + # (B, 1, ...) |
| 11 | + batch_num = cond_score.shape[0] |
| 12 | + cond_score_flat = cond_score.reshape(batch_num, 1, -1).float() |
| 13 | + uncond_score_flat = uncond_score.reshape(batch_num, 1, -1).float() |
| 14 | + |
| 15 | + # Score matrix A (B, 2, ...) |
| 16 | + score_matrix = torch.cat((uncond_score_flat, cond_score_flat), dim=1) |
| 17 | + try: |
| 18 | + _, _, Vh = torch.linalg.svd(score_matrix, full_matrices=False) |
| 19 | + except RuntimeError: |
| 20 | + # Fallback to CPU |
| 21 | + _, _, Vh = torch.linalg.svd(score_matrix.cpu(), full_matrices=False) |
| 22 | + |
| 23 | + # Drop the tangential components |
| 24 | + v1 = Vh[:, 0:1, :].to(uncond_score_flat.device) # (B, 1, ...) |
| 25 | + uncond_score_td = (uncond_score_flat @ v1.transpose(-2, -1)) * v1 |
| 26 | + return uncond_score_td.reshape_as(uncond_score).to(uncond_score.dtype) |
| 27 | + |
| 28 | + |
| 29 | +class TCFG(ComfyNodeABC): |
| 30 | + @classmethod |
| 31 | + def INPUT_TYPES(cls) -> InputTypeDict: |
| 32 | + return { |
| 33 | + "required": { |
| 34 | + "model": (IO.MODEL, {}), |
| 35 | + } |
| 36 | + } |
| 37 | + |
| 38 | + RETURN_TYPES = (IO.MODEL,) |
| 39 | + RETURN_NAMES = ("patched_model",) |
| 40 | + FUNCTION = "patch" |
| 41 | + |
| 42 | + CATEGORY = "advanced/guidance" |
| 43 | + DESCRIPTION = "TCFG – Tangential Damping CFG (2503.18137)\n\nRefine the uncond (negative) to align with the cond (positive) for improving quality." |
| 44 | + |
| 45 | + def patch(self, model): |
| 46 | + m = model.clone() |
| 47 | + |
| 48 | + def tangential_damping_cfg(args): |
| 49 | + # Assume [cond, uncond, ...] |
| 50 | + x = args["input"] |
| 51 | + conds_out = args["conds_out"] |
| 52 | + if len(conds_out) <= 1 or None in args["conds"][:2]: |
| 53 | + # Skip when either cond or uncond is None |
| 54 | + return conds_out |
| 55 | + cond_pred = conds_out[0] |
| 56 | + uncond_pred = conds_out[1] |
| 57 | + uncond_td = score_tangential_damping(x - cond_pred, x - uncond_pred) |
| 58 | + uncond_pred_td = x - uncond_td |
| 59 | + return [cond_pred, uncond_pred_td] + conds_out[2:] |
| 60 | + |
| 61 | + m.set_model_sampler_pre_cfg_function(tangential_damping_cfg) |
| 62 | + return (m,) |
| 63 | + |
| 64 | + |
| 65 | +NODE_CLASS_MAPPINGS = { |
| 66 | + "TCFG": TCFG, |
| 67 | +} |
| 68 | + |
| 69 | +NODE_DISPLAY_NAME_MAPPINGS = { |
| 70 | + "TCFG": "Tangential Damping CFG", |
| 71 | +} |
0 commit comments