-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerkle.py
82 lines (67 loc) · 3.23 KB
/
merkle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Merkle Tree
# Source: Subsection 2.2 of https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
#
# unoptimized
from dumb25519 import Scalar, Point, ScalarVector, PointVector
import dumb25519
class MerkleTree:
def __init__(self, datablocks: list):
datalength = len(datablocks)
if datalength & (datalength - 1) != 0 or datalength == 0: # check if not power of two
raise ValueError('length of datablocks not a power of 2')
self.datablocks = datablocks
def hashAllBlocks(self) -> list:
return [dumb25519.hash_to_scalar('data', block) for block in self.datablocks]
def buildMerkleTree(self, printAllHash=False) -> Scalar:
blockhashes = self.hashAllBlocks()
self.merkletreehashes = [blockhashes]
while len(blockhashes) > 1:
cache = []
for i in range(0, len(blockhashes), 2):
cache.append(dumb25519.hash_to_scalar('merkle', blockhashes[i], blockhashes[i + 1]))
self.merkletreehashes.append(cache)
blockhashes = cache
if printAllHash == True:
for i, hashes in enumerate(self.merkletreehashes):
print(f'Level {i + 1} of tree is: {hashes}\n')
return blockhashes[0] # return merkle tree root
def requestData(self, index: int) -> tuple:
# note: in some implementations, self.merkletreehashes is not stored, unlike
# in here. in those cases, when datum is requested, the whole merkle tree is
# built again, and until then the following lines below, which just gets the
# relevant hashes and return those to the requester, are performed.
num_blocks = len(self.datablocks)
num_levels = len(self.merkletreehashes)
if not(0 <= index < num_blocks):
raise ValueError(f'index must be in range({num_blocks})')
datum = self.datablocks[index]
hashes = []
for i in range(num_levels - 1):
hashes.append(self.merkletreehashes[i][index ^ 1])
index >>= 1
return datum, hashes
def verifier(index: int, datum: object, hashes: list, root: Scalar) -> bool:
curr = dumb25519.hash_to_scalar('data', datum)
for hash in hashes:
hash_index = index ^ 1
if hash_index > index:
curr = dumb25519.hash_to_scalar('merkle', curr, hash)
else:
curr = dumb25519.hash_to_scalar('merkle', hash, curr)
index >>= 1
return curr == root
if __name__ == '__main__':
# len(data) should be a power of 2
# source: https://www.random.org/strings/
data = ['6m68fxp', 'dh15yea', '66xj7yj', 'jy80l5n', '84zw7i8', 'lwy34ed', 'yyip54p', 'n5nxd6z',
'o4r4oc1', 'r4wucd8', 'kk1trrs', 'zpw91dg', 'mncp76e', '0iexfpy', 'q9hkpa9', '7g1xqad']
merkledata = MerkleTree(data)
root = merkledata.buildMerkleTree(printAllHash=True)
datum, hashes = merkledata.requestData(11) # request for data[11]
print(f'data[11]: {datum}')
print(f'provided hashes: {hashes}')
# verify provided hashes
if verifier(11, datum, hashes, root):
print('\nProvided hashes are correct!')
else:
print('\nProvided hashes are wrong!')