@@ -70,7 +70,6 @@ Now, use `epi_slide_mean()`, to calculate trailing 7 day averages of cases and d
70
70
``` {r trailing-averages}
71
71
ca <- ca %>%
72
72
epi_slide_mean(c(cases, deaths), .window_size = 7) %>%
73
- epi_slide_mean(deaths, .window_size = 7) %>%
74
73
select(-cases, -deaths) %>%
75
74
rename(cases = cases_7dav, deaths = deaths_7dav)
76
75
```
@@ -431,7 +430,7 @@ head(test %>% select(pred_trailing_cv, time_value))
431
430
```
432
431
433
432
The method fitting on all past data up to the forecasting date can be
434
- implemented by changing ` before = Inf ` in ` epi_slide ` .
433
+ implemented by changing ` . before = Inf` in ` epi_slide ` .
435
434
436
435
``` {r epipredict-cv}
437
436
# slide an arx_forecaster with appropriate outcome, predictions and lags
@@ -443,8 +442,8 @@ epi_pred_cv <- epi_slide(
443
442
trainer = linear_reg() %>% set_engine("lm"),
444
443
args_list = arx_args_list(lags = k-1, ahead = 1L)
445
444
)$predictions,
446
- before = Inf,
447
- ref_time_values = fc_time_values,
445
+ . before = Inf,
446
+ . ref_time_values = fc_time_values,
448
447
.new_col_name = "fc"
449
448
) |>
450
449
unpack(fc, names_sep = "_")
@@ -484,8 +483,8 @@ epi_pred_cv_7 <- epi_slide(
484
483
trainer = linear_reg() %>% set_engine("lm"),
485
484
args_list = arx_args_list(lags = k-n_ahead, ahead = n_ahead)
486
485
)$predictions,
487
- before = Inf,
488
- ref_time_values = fc_time_values_7,
486
+ . before = Inf,
487
+ . ref_time_values = fc_time_values_7,
489
488
.new_col_name = "fc"
490
489
) |>
491
490
unpack(fc, names_sep = "_")
@@ -725,8 +724,8 @@ ar_all_past <- epi_slide(
725
724
trainer = linear_reg() %>% set_engine("lm"),
726
725
args_list = arx_args_list(lags = 0L, ahead = 1L)
727
726
)$predictions,
728
- before = Inf,
729
- ref_time_values = fc_time_values,
727
+ . before = Inf,
728
+ . ref_time_values = fc_time_values,
730
729
.new_col_name = "all_past"
731
730
) |>
732
731
unpack(all_past, names_sep = "_")
@@ -739,8 +738,8 @@ ar_trailing <- epi_slide(
739
738
trainer = linear_reg() %>% set_engine("lm"),
740
739
args_list = arx_args_list(lags = 0L, ahead = 1L)
741
740
)$predictions,
742
- before = w,
743
- ref_time_values = fc_time_values,
741
+ . before = w,
742
+ . ref_time_values = fc_time_values,
744
743
.new_col_name = "trailing"
745
744
) |>
746
745
unpack(trailing, names_sep = "_")
@@ -952,8 +951,8 @@ arx_all_past <- epi_slide(
952
951
args_list = arx_args_list(lags = list(0, k-1),
953
952
ahead = 1L)
954
953
)$predictions,
955
- before = Inf,
956
- ref_time_values = fc_time_values,
954
+ . before = Inf,
955
+ . ref_time_values = fc_time_values,
957
956
.new_col_name = "all_past"
958
957
) |>
959
958
unpack(all_past, names_sep = "_")
@@ -967,8 +966,8 @@ arx_trailing <- epi_slide(
967
966
args_list = arx_args_list(lags = list(0, k-1),
968
967
ahead = 1L)
969
968
)$predictions,
970
- before = (w+k-1),
971
- ref_time_values = fc_time_values,
969
+ . before = (w+k-1),
970
+ . ref_time_values = fc_time_values,
972
971
.new_col_name = "trailing"
973
972
) |>
974
973
unpack(trailing, names_sep = "_")
@@ -1552,8 +1551,8 @@ fc_time_values <- seq(
1552
1551
1553
1552
data_archive <- data_archive %>%
1554
1553
epix_slide(
1555
- before = Inf,
1556
- ref_time_values = fc_time_values,
1554
+ . before = Inf,
1555
+ .versions = fc_time_values,
1557
1556
function(x, gk, rtv) {
1558
1557
x %>%
1559
1558
epi_slide_mean(case_rate, .window_size = 7L, .suffix = "_7d_av") %>%
@@ -1585,7 +1584,7 @@ pred_all_past = pred_trailing <- matrix(NA, ncol = 4, nrow = 0)
1585
1584
w <- 30 # trailing window size
1586
1585
1587
1586
for (fc_date in fc_time_values) {
1588
- data <- epix_as_of(ca_archive, max_version = as.Date(fc_date))
1587
+ data <- epix_as_of(ca_archive, as.Date(fc_date))
1589
1588
data$lagged_deaths <- dplyr::lag(data$deaths, 1)
1590
1589
data$lagged_cases <- dplyr::lag(data$cases, k)
1591
1590
@@ -1729,14 +1728,12 @@ forecaster <- function(x) {
1729
1728
1730
1729
arx_preds <- data %>%
1731
1730
epix_slide(~ forecaster(.x),
1732
- before = 120, ref_time_values = fc_time_values,
1733
- names_sep = NULL
1731
+ .before = 120, .versions = fc_time_values
1734
1732
) %>%
1735
1733
mutate(engine_type = quantile_reg()$engine) %>%
1736
1734
mutate(ahead_val = target_date - forecast_date)
1737
1735
1738
- x_latest <- epix_as_of(data,
1739
- max_version = max(data$versions_end))
1736
+ x_latest <- epix_as_of(data, data$versions_end)
1740
1737
```
1741
1738
1742
1739
0 commit comments