|
| 1 | +library(dplyr) |
| 2 | +library(tidyr) |
| 3 | +library(aws.s3) |
| 4 | + |
| 5 | +Sys.setenv("AWS_DEFAULT_REGION" = "us-east-2") |
| 6 | +s3bucket <- tryCatch( |
| 7 | + { |
| 8 | + get_bucket(bucket = "forecast-eval") |
| 9 | + }, |
| 10 | + error = function(e) { |
| 11 | + e |
| 12 | + } |
| 13 | +) |
| 14 | + |
| 15 | +readbucket <- function(name) { |
| 16 | + tryCatch( |
| 17 | + { |
| 18 | + s3readRDS(object = name, bucket = s3bucket) |
| 19 | + }, |
| 20 | + error = function(e) { |
| 21 | + e |
| 22 | + } |
| 23 | + ) |
| 24 | +} |
| 25 | + |
| 26 | +# Cases, deaths, hosp scores: needed for "actual"s |
| 27 | +cases <- bind_rows( |
| 28 | + readbucket("score_cards_nation_cases.rds"), |
| 29 | + readbucket("score_cards_state_cases.rds") |
| 30 | +) |
| 31 | +deaths <- bind_rows( |
| 32 | + readbucket("score_cards_nation_deaths.rds"), |
| 33 | + readbucket("score_cards_state_deaths.rds") |
| 34 | +) |
| 35 | +hosp <- bind_rows( |
| 36 | + readbucket("score_cards_nation_hospitalizations.rds"), |
| 37 | + readbucket("score_cards_state_hospitalizations.rds") |
| 38 | +) |
| 39 | + |
| 40 | +# The big one: predictions from all forecasters |
| 41 | +pred <- readbucket("predictions_cards.rds") |
| 42 | + |
| 43 | +# Cases |
| 44 | +pred_cases <- pred %>% |
| 45 | + filter(signal == "confirmed_incidence_num") %>% |
| 46 | + mutate(signal = NULL, data_source = NULL, incidence_period = NULL) %>% |
| 47 | + pivot_wider( |
| 48 | + names_from = quantile, |
| 49 | + values_from = value, |
| 50 | + names_prefix = "forecast_" |
| 51 | + ) |
| 52 | + |
| 53 | +actual_cases <- cases %>% |
| 54 | + select(ahead, geo_value, forecaster, forecast_date, target_end_date, actual) |
| 55 | + |
| 56 | +joined_cases <- left_join(pred_cases, actual_cases) |
| 57 | +sum(is.na(actual_cases$actual)) == sum(is.na(joined_cases$actual)) |
| 58 | +write.csv(joined_cases, "cases.csv") |
| 59 | + |
| 60 | +# Deaths |
| 61 | +pred_deaths <- pred %>% |
| 62 | + filter(signal == "deaths_incidence_num") %>% |
| 63 | + mutate(signal = NULL, data_source = NULL, incidence_period = NULL) %>% |
| 64 | + pivot_wider( |
| 65 | + names_from = quantile, |
| 66 | + values_from = value, |
| 67 | + names_prefix = "forecast_" |
| 68 | + ) |
| 69 | + |
| 70 | +actual_deaths <- deaths %>% |
| 71 | + select(ahead, geo_value, forecaster, forecast_date, target_end_date, actual) |
| 72 | + |
| 73 | +joined_deaths <- left_join(pred_deaths, actual_deaths) |
| 74 | +sum(is.na(actual_deaths$actual)) == sum(is.na(joined_deaths$actual)) |
| 75 | +write.csv(joined_deaths, "deaths.csv") |
| 76 | + |
| 77 | +# Hospitalizations: break up by weeks since we run into memory errors o/w! |
| 78 | +pred_hosp <- actual_hosp <- joined_hosp <- vector(mode = "list", length = 4) |
| 79 | +for (k in 1:4) { |
| 80 | + cat(k, "... ") |
| 81 | + days <- (k - 1) * 7 + 1:7 |
| 82 | + pred_hosp[[k]] <- pred %>% |
| 83 | + filter(signal == "confirmed_admissions_covid_1d", ahead %in% days) %>% |
| 84 | + mutate(signal = NULL, data_source = NULL, incidence_period = NULL) %>% |
| 85 | + pivot_wider( |
| 86 | + names_from = quantile, |
| 87 | + values_from = value, |
| 88 | + names_prefix = "forecast_" |
| 89 | + ) |
| 90 | + |
| 91 | + actual_hosp[[k]] <- hosp %>% |
| 92 | + filter(ahead %in% days) %>% |
| 93 | + select(ahead, geo_value, forecaster, forecast_date, target_end_date, actual) |
| 94 | + |
| 95 | + joined_hosp[[k]] <- left_join(pred_hosp[[k]], actual_hosp[[k]]) |
| 96 | + cat(sum(is.na(actual_hosp[[k]]$act)) == sum(is.na(joined_hosp[[k]]$act))) |
| 97 | + write.csv(joined_hosp[[k]], sprintf("hospitalizations_%iwk.csv", k)) |
| 98 | +} |
0 commit comments