@@ -251,16 +251,46 @@ all_flatlines <- lapply(
251251# same plotting code as in the arx multi-ahead case
252252workflow <- all_flatlines[[1]]$epi_workflow
253253results <- purrr::map_df(all_flatlines, ~ `$`(., "predictions"))
254- results %>% filter(target_date == max(target_date))
255254autoplot(
256255 object = workflow,
257256 predictions = results,
258257 plot_data = covid_case_death_rates |> filter(geo_value %in% used_locations, time_value > "2021-07-01")
259258)
260259```
261260
262- Note that the ` cdc_baseline_forecaster ` is a slight modification of this method
263- for use in [ the CDC COVID19 Forecasting Hub] ( https://covid19forecasthub.org/ ) .
261+ ### ` cdc_baseline_forecaster() `
262+
263+ This is a different method of generating a flatline forecast, used as a baseline
264+ for [ COVID19ForecastHub] ( https://covid19forecasthub.org ) .
265+
266+ ``` {r make-cdc-forecast, warning=FALSE}
267+ all_cdc_flatline <-
268+ cdc_baseline_forecaster(
269+ covid_case_death_rates |>
270+ filter(time_value <= forecast_date, geo_value %in% used_locations),
271+ outcome = "death_rate",
272+ args_list = cdc_baseline_args_list(
273+ aheads = 1:28,
274+ data_frequency = "1 day"
275+ )
276+ )
277+ # same plotting code as in the arx multi-ahead case
278+ workflow <- all_cdc_flatline$epi_workflow
279+ results <- all_cdc_flatline$predictions
280+ autoplot(
281+ object = workflow,
282+ predictions = results,
283+ plot_data = covid_case_death_rates |> filter(geo_value %in% used_locations, time_value > "2021-07-01")
284+ )
285+ ```
286+
287+ The median is the same, but the quantiles are generated using
288+ ` layer_cdc_flatline_quantiles() ` instead of ` layer_residual_quantiles() ` .
289+ Both rely on the computing the quantiles of the residuals, but this model
290+ extrapolates the quantiles by repeatedly sampling the initial quantiles to
291+ generate the next quantiles.
292+ This results in much smoother quantiles, but ones that only capture the
293+ one-ahead uncertainty.
264294
265295### ` climatological_forecaster() `
266296A different kind of baseline, the ` climatological_forecaster() ` forecasts the
0 commit comments