@@ -207,20 +207,22 @@ test_that("Postprocessing to get cases from case rate", {
207
207
208
208
209
209
test_that(" test joining by default columns" , {
210
-
211
210
jhu <- case_death_rate_subset %> %
212
211
dplyr :: filter(time_value > " 2021-11-01" , geo_value %in% c(" ca" , " ny" )) %> %
213
212
dplyr :: select(geo_value , time_value , case_rate )
214
213
215
- reverse_pop_data = data.frame (geo_value = c(" ca" , " ny" ),
216
- values = c(1 / 20000 , 1 / 30000 ))
214
+ reverse_pop_data <- data.frame (
215
+ geo_value = c(" ca" , " ny" ),
216
+ values = c(1 / 20000 , 1 / 30000 )
217
+ )
217
218
218
219
r <- epi_recipe(jhu ) %> %
219
220
step_population_scaling(case_rate ,
220
- df = reverse_pop_data ,
221
- df_pop_col = " values" ,
222
- by = NULL ,
223
- suffix = " _scaled" ) %> %
221
+ df = reverse_pop_data ,
222
+ df_pop_col = " values" ,
223
+ by = NULL ,
224
+ suffix = " _scaled"
225
+ ) %> %
224
226
step_epi_lag(case_rate_scaled , lag = c(0 , 7 , 14 )) %> % # cases
225
227
step_epi_ahead(case_rate_scaled , ahead = 7 , role = " outcome" ) %> % # cases
226
228
recipes :: step_naomit(recipes :: all_predictors()) %> %
@@ -234,20 +236,28 @@ test_that("test joining by default columns", {
234
236
layer_predict() %> %
235
237
layer_threshold(.pred ) %> %
236
238
layer_naomit(.pred ) %> %
237
- layer_population_scaling(.pred , df = reverse_pop_data ,
238
- by = NULL ,
239
- df_pop_col = " values" )
239
+ layer_population_scaling(.pred ,
240
+ df = reverse_pop_data ,
241
+ by = NULL ,
242
+ df_pop_col = " values"
243
+ )
240
244
241
- expect_snapshot(wf <- epi_workflow(r ,
242
- parsnip :: linear_reg()) %> %
245
+ expect_snapshot(wf <- epi_workflow(
246
+ r ,
247
+ parsnip :: linear_reg()
248
+ ) %> %
243
249
fit(jhu ) %> %
244
250
add_frosting(f ))
245
251
246
- latest <- get_test_data(recipe = r ,
247
- x = case_death_rate_subset %> %
248
- dplyr :: filter(time_value > " 2021-11-01" ,
249
- geo_value %in% c(" ca" , " ny" )) %> %
250
- dplyr :: select(geo_value , time_value , case_rate ))
252
+ latest <- get_test_data(
253
+ recipe = r ,
254
+ x = case_death_rate_subset %> %
255
+ dplyr :: filter(
256
+ time_value > " 2021-11-01" ,
257
+ geo_value %in% c(" ca" , " ny" )
258
+ ) %> %
259
+ dplyr :: select(geo_value , time_value , case_rate )
260
+ )
251
261
252
262
253
263
expect_snapshot(p <- predict(wf , latest ))
0 commit comments