|
2 | 2 | import pandas as pd |
3 | 3 | from pandas.testing import assert_frame_equal |
4 | 4 |
|
5 | | -from delphi_nwss.run import ( |
6 | | - add_needed_columns, |
7 | | - generate_weights, |
8 | | - sum_all_nan, |
9 | | - weighted_state_sum, |
10 | | - weighted_nation_sum, |
11 | | -) |
12 | | - |
13 | | - |
14 | | -def test_sum_all_nan(): |
15 | | - """Check that sum_all_nan returns NaN iff everything is a NaN""" |
16 | | - assert sum_all_nan(np.array([3, 5])) == 8 |
17 | | - assert np.isclose(sum_all_nan([np.nan, 3, 5]), 8) |
18 | | - assert np.isnan(np.array([np.nan, np.nan])).all() |
19 | | - |
20 | | - |
21 | | -def test_weight_generation(): |
22 | | - dataFrame = pd.DataFrame( |
23 | | - { |
24 | | - "a": [1, 2, 3, 4, np.nan], |
25 | | - "b": [5, 6, 7, 8, 9], |
26 | | - "population_served": [10, 5, 8, 1, 3], |
27 | | - } |
28 | | - ) |
29 | | - weighted = generate_weights(dataFrame, column_aggregating="a") |
30 | | - weighted_by_hand = pd.DataFrame( |
31 | | - { |
32 | | - "a": [1, 2, 3, 4, np.nan], |
33 | | - "b": [5, 6, 7, 8, 9], |
34 | | - "population_served": [10, 5, 8, 1, 3], |
35 | | - "relevant_pop_a": [10, 5, 8, 1, 0], |
36 | | - "weighted_a": [10.0, 2 * 5.0, 3 * 8, 4.0 * 1, np.nan * 0], |
37 | | - } |
38 | | - ) |
39 | | - assert_frame_equal(weighted, weighted_by_hand) |
40 | | - # operations are in-place |
41 | | - assert_frame_equal(weighted, dataFrame) |
42 | | - |
43 | | - |
44 | | -def test_weighted_state_sum(): |
45 | | - dataFrame = pd.DataFrame( |
46 | | - { |
47 | | - "state": ["al", "al", "ca", "ca", "nd", "me", "me"], |
48 | | - "timestamp": np.zeros(7), |
49 | | - "a": [1, 2, 3, 4, 12, -2, 2], |
50 | | - "b": [5, 6, 7, np.nan, np.nan, -1, -2], |
51 | | - "population_served": [10, 5, 8, 1, 3, 1, 2], |
52 | | - } |
53 | | - ) |
54 | | - weighted = generate_weights(dataFrame, column_aggregating="b") |
55 | | - agg = weighted_state_sum(weighted, "state", "b") |
56 | | - expected_agg = pd.DataFrame( |
57 | | - { |
58 | | - "timestamp": np.zeros(4), |
59 | | - "geo_id": ["al", "ca", "me", "nd"], |
60 | | - "relevant_pop_b": [10 + 5, 8 + 0, 1 + 2, 0], |
61 | | - "weighted_b": [5 * 10 + 6 * 5, 7 * 8 + 0, 1 * -1 + -2 * 2, np.nan], |
62 | | - "val": [80 / 15, 56 / 8, -5 / 3, np.nan], |
63 | | - } |
64 | | - ) |
65 | | - assert_frame_equal(agg, expected_agg) |
66 | | - |
67 | | - weighted = generate_weights(dataFrame, column_aggregating="a") |
68 | | - agg_a = weighted_state_sum(weighted, "state", "a") |
69 | | - expected_agg_a = pd.DataFrame( |
70 | | - { |
71 | | - "timestamp": np.zeros(4), |
72 | | - "geo_id": ["al", "ca", "me", "nd"], |
73 | | - "relevant_pop_a": [10 + 5, 8 + 1, 1 + 2, 3], |
74 | | - "weighted_a": [1 * 10 + 2 * 5, 3 * 8 + 1 * 4, -2 * 1 + 2 * 2, 12 * 3], |
75 | | - "val": [20 / 15, 28 / 9, (-2 * 1 + 2 * 2) / 3, 36 / 3], |
76 | | - } |
77 | | - ) |
78 | | - assert_frame_equal(agg_a, expected_agg_a) |
79 | | - |
80 | | - |
81 | | -def test_weighted_nation_sum(): |
82 | | - dataFrame = pd.DataFrame( |
83 | | - { |
84 | | - "state": [ |
85 | | - "al", |
86 | | - "al", |
87 | | - "ca", |
88 | | - "ca", |
89 | | - "nd", |
90 | | - ], |
91 | | - "timestamp": np.hstack((np.zeros(3), np.ones(2))), |
92 | | - "a": [1, 2, 3, 4, 12], |
93 | | - "b": [5, 6, 7, np.nan, np.nan], |
94 | | - "population_served": [10, 5, 8, 1, 3], |
95 | | - } |
96 | | - ) |
97 | | - weighted = generate_weights(dataFrame, column_aggregating="a") |
98 | | - agg = weighted_nation_sum(weighted, "a") |
99 | | - expected_agg = pd.DataFrame( |
100 | | - { |
101 | | - "timestamp": [0.0, 1], |
102 | | - "relevant_pop_a": [10 + 5 + 8, 1 + 3], |
103 | | - "weighted_a": [1 * 10 + 2 * 5 + 3 * 8, 1 * 4 + 3 * 12], |
104 | | - "val": [44 / 23, 40 / 4], |
105 | | - "geo_id": ["us", "us"], |
106 | | - } |
107 | | - ) |
108 | | - assert_frame_equal(agg, expected_agg) |
| 5 | +from delphi_nwss.run import add_needed_columns |
109 | 6 |
|
110 | 7 |
|
111 | 8 | def test_adding_cols(): |
|
0 commit comments