-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtune.py
executable file
·102 lines (81 loc) · 3.45 KB
/
tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# tune.py
#
# Application entry point for fine-tuning a masked language model.
import os
import re
import hydra
import logging
from omegaconf import DictConfig, OmegaConf
from core.tuner import Tuner
log = logging.getLogger(__name__)
OmegaConf.register_new_resolver(
'get_dir_name',
# we have to do this via an intermediate lambda because omegaconf only allows lambda resolvers
lambda model, tuning, hyperparameters, kl_loss_params, layerwise_loss_params: formatted_dir_name(model, tuning, hyperparameters, kl_loss_params, layerwise_loss_params)
)
def formatted_dir_name(
model: DictConfig, tuning: DictConfig,
hyperparameters: DictConfig, kl_loss_params: DictConfig,
layerwise_loss_params: DictConfig,
) -> str:
dir_name = tuning.name
model_name = 'bbert' if model.friendly_name == 'bert' \
else 'dbert' if model.friendly_name == 'distilbert' \
else 'rbert' if model.friendly_name == 'roberta' \
else 'mbert' + model.friendly_name.split('_')[-1] if 'multiberts' in model.friendly_name \
else model.friendly_name
dir_name = os.path.join(dir_name, model_name)
dir_name += '-'
dir_name += hyperparameters.masked_tuning_style[0] + 'mask' \
if hyperparameters.masked_tuning_style in ['bert', 'roberta', 'always', 'none'] \
else hyperparameters.masked_tuning_style
dir_name += '-'
dir_name += 'wpunc' if not hyperparameters.strip_punct else 'npunc'
dir_name += '-'
if hyperparameters.unfreezing == 'all_hidden_layers':
dir_name += 'ahunf'
else:
dir_name += str(hyperparameters.unfreezing)[:2].zfill(2) + 'unf'
if 'gradual' in hyperparameters.unfreezing:
dir_name += re.sub(r'.*([0-9]+)', '\\1', hyperparameters.unfreezing).zfill(2)
elif 'mixout' in hyperparameters.unfreezing:
mixout_prob = re.search(r'([0-9]+)?\.[0-9]+$', hyperparameters.unfreezing)[0]
if mixout_prob.startswith('.'):
mixout_prob = '0' + mixout_prob
dir_name += mixout_prob
dir_name += '-'
dir_name += f'lr{hyperparameters.lr}'
if hyperparameters.use_kl_baseline_loss and not hyperparameters.unfreezing == 'none':
dir_name += f'-{kl_loss_params.scaleby:.2f}kl'
dir_name += kl_loss_params.masking[0] + 'mask' \
if kl_loss_params.masking in ['always', 'none', 'bert'] \
else kl_loss_params.masking
if hyperparameters.use_layerwise_baseline_loss and not hyperparameters.unfreezing == 'none':
dir_name += f'-{layerwise_loss_params.l2_scaleby:.2f}lw'
dir_name += f'-{layerwise_loss_params.kl_scaleby:.2f}kl'
dir_name += layerwise_loss_params.masking[0] + 'mask' \
if layerwise_loss_params.masking in ['always', 'none', 'bert'] \
else layerwise_loss_params.masking
if 'which_args' in tuning and tuning.exp_type == 'newverb':
dir_name = os.path.join(dir_name, model.friendly_name) if tuning.which_args == 'model' else \
os.path.join(dir_name, tuning.which_args)
dir_name += '_args'
if hyperparameters.mask_args == True and tuning.exp_type == 'newverb':
dir_name += '-margs'
if 'mask_added_tokens' in hyperparameters and hyperparameters.mask_added_tokens != True:
dir_name += '-nmato'
return dir_name
@hydra.main(config_path='conf', config_name='tune')
def tune(cfg: DictConfig) -> None:
print(OmegaConf.to_yaml(cfg, resolve=True))
if cfg.tuning.data:
tuner = Tuner(cfg, use_gpu=cfg.use_gpu)
tuner.tune()
else:
log.warning(
"You asked to tune, but didn't provide any tuning data. "
"I'm quitting now. "
"Not sure what you were hoping for..."
)
if __name__ == "__main__":
tune()