@@ -201,7 +201,7 @@ pip install torch==1.10.2
201
201
202
202
< table>
203
203
< tr>
204
- < th rowspan= " 2" > Trained Model< / th>
204
+ < th rowspan= " 2" > Language Model< / th>
205
205
< th rowspan= " 2" > MLM Training Data< / th>
206
206
< th colspan= " 4" > MLM Testing Data< / th>
207
207
< / tr>
@@ -212,7 +212,7 @@ pip install torch==1.10.2
212
212
< th> 現代< / th>
213
213
< / tr>
214
214
< tr>
215
- < td rowspan= " 5" > ckiplab/ bert- base- Chinese< / td>
215
+ < td rowspan= " 5" > ckiplab/ bert- base- han - Chinese< / td>
216
216
< td style= " text-align: center;" > 上古< / td>
217
217
< td class = " right bold" >< strong> 24.7588 < / strong>< / td>
218
218
< td class = " right" > 87.8176 < / td>
@@ -241,7 +241,7 @@ pip install torch==1.10.2
241
241
< td class = " right" > 4.6143 < / td>
242
242
< / tr>
243
243
< tr>
244
- < td style= " text-align: center" > All < / td>
244
+ < td style= " text-align: center" > Merge < / td>
245
245
< td class = " right" > 31.1807 < / td>
246
246
< td class = " right bold" >< strong> 61.2381 < / strong>< / td>
247
247
< td class = " right" > 49.0672 < / td>
@@ -268,12 +268,12 @@ pip install torch==1.10.2
268
268
}
269
269
< / style> -- >
270
270
271
- # ## Word Segmentation (WS), **F1 score ↑**
271
+ # ## Word Segmentation (WS), **F1 score (%) ↑**
272
272
< table>
273
273
< tr>
274
- < th rowspan= " 2" > Trained Model< / th>
275
- < th rowspan= " 2" > WS Training Data< / th>
276
- < th colspan= " 4" > WS Testing Data< / th>
274
+ < th rowspan= " 2" > WS Model< / th>
275
+ < th rowspan= " 2" > Training Data< / th>
276
+ < th colspan= " 4" > Testing Data< / th>
277
277
< / tr>
278
278
< tr>
279
279
< th> 上古< / th>
@@ -282,51 +282,103 @@ pip install torch==1.10.2
282
282
< th> 現代< / th>
283
283
< / tr>
284
284
< tr>
285
- < td rowspan= " 5" > ckiplab/ bert- base- Chinese < BR > w / finetune on all period MLM < / td>
285
+ < td rowspan= " 5" > ckiplab/ bert- base- han - chinese - ws < / td>
286
286
< td style= " text-align: center" > 上古< / td>
287
- < td class = " right" >< strong> 0.9761 < / strong>< / td>
288
- < td class = " right" > 0.8857 < / td>
289
- < td class = " right" > 0.8329 < / td>
290
- < td class = " right" > 0.7038 < / td>
287
+ < td class = " right" >< strong> 97.6090 < / strong>< / td>
288
+ < td class = " right" > 88.5734 < / td>
289
+ < td class = " right" > 83.2877 < / td>
290
+ < td class = " right" > 70.3772 < / td>
291
291
< / tr>
292
292
< tr>
293
293
< td style= " text-align: center" > 中古< / td>
294
- < td class = " right" > 0.9264 < / td>
295
- < td class = " right" >< strong> 0.9265 < / strong>< / td>
296
- < td class = " right" > 0.8948 < / td>
297
- < td class = " right" > 0.7838 < / td>
294
+ < td class = " right" > 92.6402 < / td>
295
+ < td class = " right" >< strong> 92.6538 < / strong>< / td>
296
+ < td class = " right" > 89.4803 < / td>
297
+ < td class = " right" > 78.3827 < / td>
298
298
< / tr>
299
299
< tr>
300
300
< td style= " text-align: center" > 近代< / td>
301
- < td class = " right" > 0.9087 < / td>
302
- < td class = " right" > 0.9219 < / td>
303
- < td class = " right" >< strong> 0.9465 < / strong>< / td>
304
- < td class = " right" > 0.8121 < / td>
301
+ < td class = " right" > 90.8651 < / td>
302
+ < td class = " right" > 92.1861 < / td>
303
+ < td class = " right" >< strong> 94.6495 < / strong>< / td>
304
+ < td class = " right" > 81.2143 < / td>
305
305
< / tr>
306
306
< tr>
307
307
< td style= " text-align: center" > 現代< / td>
308
- < td class = " right" > 0.8702 < / td>
309
- < td class = " right" > 0.8358 < / td>
310
- < td class = " right" > 0.8494 < / td>
311
- < td class = " right" >< strong> 0.9694 < / strong>< / td>
308
+ < td class = " right" > 87.0234 < / td>
309
+ < td class = " right" > 83.5810 < / td>
310
+ < td class = " right" > 84.9370 < / td>
311
+ < td class = " right" >< strong> 96.9446 < / strong>< / td>
312
312
< / tr>
313
313
< tr>
314
- < td style= " text-align: center" > All < / td>
315
- < td class = " right" > 0.9745 < / td>
316
- < td class = " right bold" > 0.92 < / td>
317
- < td class = " right" > 0.941 < / td>
318
- < td class = " right" > 0.9673 < / td>
314
+ < td style= " text-align: center" > Merge < / td>
315
+ < td class = " right" > 97.4537 < / td>
316
+ < td class = " right bold" > 91.9990 < / td>
317
+ < td class = " right" > 94.0970 < / td>
318
+ < td class = " right" > 96.7314 < / td>
319
319
< / tr>
320
320
< tr>
321
321
< td> ckiplab/ bert- base- chinese- ws< / td>
322
322
< td style= " text-align: center" > - < / td>
323
- < td class = " right" > 0.8657 < / td>
324
- < td class = " right" > 0.8291 < / td>
325
- < td class = " right" > 0.8432 < / td>
326
- < td class = " right" >< strong> 0.9813 < / strong>< / td>
323
+ < td class = " right" > 86.5698 < / td>
324
+ < td class = " right" > 82.9115 < / td>
325
+ < td class = " right" > 84.3213 < / td>
326
+ < td class = " right" >< strong> 98.1325 < / strong>< / td>
327
327
< / tr>
328
328
< / table>
329
329
330
+ # ## Part-of-Speech (POS) Tagging, **F1 score (%) ↑**
331
+ < table>
332
+ < tr>
333
+ < th rowspan= " 2" > POS Model< / th>
334
+ < th rowspan= " 2" > Training Data< / th>
335
+ < th colspan= " 4" > Testing Data< / th>
336
+ < / tr>
337
+ < tr>
338
+ < th> 上古< / th>
339
+ < th> 中古< / th>
340
+ < th> 近代< / th>
341
+ < th> 現代< / th>
342
+ < / tr>
343
+ < tr>
344
+ < td rowspan= " 5" > ckiplab/ bert- base- han- chinese- pos< / td>
345
+ < td style= " text-align: center" > 上古< / td>
346
+ < td class = " right" >< strong> 91.2945 < / strong>< / td>
347
+ < td class = " right" > - < / td>
348
+ < td class = " right" > - < / td>
349
+ < td class = " right" > - < / td>
350
+ < / tr>
351
+ < tr>
352
+ < td style= " text-align: center" > 中古< / td>
353
+ < td class = " right" > 7.3662 < / td>
354
+ < td class = " right" >< strong> 80.4896 < / strong>< / td>
355
+ < td class = " right" > 11.3371 < / td>
356
+ < td class = " right" > 10.2577 < / td>
357
+ < / tr>
358
+ < tr>
359
+ < td style= " text-align: center" > 近代< / td>
360
+ < td class = " right" > 6.4794 < / td>
361
+ < td class = " right" > 14.3653 < / td>
362
+ < td class = " right" >< strong> 88.6580 < / strong>< / td>
363
+ < td class = " right" > 0.5316 < / td>
364
+ < / tr>
365
+ < tr>
366
+ < td style= " text-align: center" > 現代< / td>
367
+ < td class = " right" > 11.9895 < / td>
368
+ < td class = " right" > 11.0775 < / td>
369
+ < td class = " right" > 0.4033 < / td>
370
+ < td class = " right" >< strong> 93.2813 < / strong>< / td>
371
+ < / tr>
372
+ < tr>
373
+ < td style= " text-align: center" > Merge< / td>
374
+ < td class = " right" > 88.8772 < / td>
375
+ < td class = " right bold" > 42.4369 < / td>
376
+ < td class = " right" > 86.9093 < / td>
377
+ < td class = " right" > 92.9012 < / td>
378
+ < / tr>
379
+ < / table>
380
+
381
+
330
382
# # License
331
383
[< img src=" https://www.gnu.org/graphics/gplv3-with-text-136x68.png" >
332
384
](https:// www.gnu.org/ licenses/ gpl- 3.0 .html)
0 commit comments