Skip to content

POS tagging #34

@loaga

Description

@loaga

I've tried the following example as input:

      這些語辭都含有高調音

這些(Neqa) 語辭(Na) 都(D) 含有(VJ) 高(VH) 調音(VA)

With customized dictionary, it was able to tag 高調音 as Na.

word_to_weight = {
"高調音": 1,
"土地公": 1,
"土地婆": 1,
"公有": 2,
"": 1,
"來亂的": "啦",
"緯來體育台": 1,
}

word_sentence_list = ws(sentence_list, recommend_dictionary=dictionary)

Is there any code or paper describe how data (token_list.npy, vector_list.np, model_pos, etc) were trained/created?

Thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions