-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatisticaltools.py
238 lines (171 loc) · 6.34 KB
/
statisticaltools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
class InterCumulSamp:
def __init__(self, dist, space):
self.dist = dist
self.space = space
self.interpolation_coef = self.interpolate()
self.cumulative_coef = self.cumulative_all_points()
self.s_coef = self.sampler_coef()
def interpolate(self):
p = []
for i in range(0, len(self.space) - 1):
dy = self.dist[i + 1] - self.dist[i]
dx = self.space[i + 1] - self.space[i]
coef_a = dy / dx
coef_b = -dy / dx * self.space[i] + self.dist[i]
p.append((coef_a, coef_b, self.space[i], self.space[i + 1]))
return p
def interpolated_point(self,point):
coef = self.interpolation_coef
for item in coef:
if point >= item[2] and point <= item[3]:
return item[0] * point + item[1]
def cumulative(self, point):
integral_i = 0
for item in self.interpolation_coef:
if point >= item[2] and point >= item[3]:
integral_i += item[0] / 2 * (item[3] ** 2 - item[2] ** 2) + item[1] * (item[3] - item[2])
elif point >= item[2] and point < item[3]:
integral_i += item[0] / 2 * (point ** 2 - item[2] ** 2) + item[1] * (point - item[2])
return integral_i
def cumulative_all_points(self):
cumulative_all = []
for i in self.space:
c = self.cumulative(i)
cumulative_all.append((c,i))
return cumulative_all
def sampler_coef(self):
s = []
cumulative_all = self.cumulative_all_points()
for j in range(0, len(cumulative_all) - 1):
dc = cumulative_all[j + 1][0] - cumulative_all[j][0]
dx = cumulative_all[j + 1][1] - cumulative_all[j][1]
coefs_a = dx / dc
coefs_b = -dx / dc * cumulative_all[j][0] + cumulative_all[j][1]
s.append((coefs_a, coefs_b, cumulative_all[j][0], cumulative_all[j + 1][0]))
return s
def sampler(self, point):
for item in self.s_coef:
if point >= item[2] and point <= item[3]:
return item[0] * point + item[1]
def sampler_list_points(self, s_list):
sampler_list = []
for i in s_list:
s = self.sampler(i)
sampler_list.append(s)
return sampler_list
#########################################################################################################################################################
#########################################################################################################################################################
class Statisticaltools1:
def __init__(self, data1):
self.data1 = data1
self.soma_total = self.soma()
self.med = self.media_aritmetica()
self.var_list = self.var_list()
self.soma_var = self.soma_variance()
self.var = self.variance()
#Media aritmetica
def soma(self):
m = 0
for i in self.data1:
m = m + i
return (m)
def media_aritmetica(self):
media_aritmetica = self.soma_total / len(self.data1)
return media_aritmetica
#Variancia
def var_list(self):
list_var = []
for i in range(0, len(self.data1)):
ri = ((self.data1[i] - self.med) ** 2)
list_var.append(ri)
return list_var
def soma_variance(self):
m = 0
for i in self.var_list:
m = m + i
return (m)
def variance(self):
var = self.soma_var / len(self.data1)
return var
def skew(self):
list_skew = []
for i in range(0, len(self.data1)):
ri = ((self.data1[i] - self.med) ** 3)
list_skew.append(ri)
s = 0
for i in list_skew:
s = s + i
skew = s /(len(self.data1) * ((self.var ** (0.5)) ** 3))
return skew
def curtosis(self):
c1_list =[]
for i in range(0, len(self.data1)):
ri = ((self.data1[i] - self.med) ** 4)
c1_list.append(ri)
soma_c1 = 0
for i in c1_list:
soma_c1 = soma_c1 + i
a = soma_c1 / len(c1_list)
b = (self.var ** (0.5)) ** 4
curtosis = ((1 / (b ** 4)) * a) - 3
return curtosis
#xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
#xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
class Statisticaltools2:
def __init__(self, data1, data2):
self.data1 = data1
self.data2 = data2
self.cov = self.covariance()
# Erro absoluto
def absolute_error(self):
err = []
for i in range(0, len(self.data1)):
s = self.data1[i] - self.data2[i]
ri = abs(s)
err.append(ri)
return err
# Erro relativo
def relative_error(self):
rel_err = []
for i in range(0, len(self.data1)):
s = self.data1[i] - self.data2[i]
r = abs(s)
ri = r / self.data2[i]
rel_err.append(ri)
return rel_err
#Covariancia
def covariance(self):
m1 = 0
m2 = 0
for i in self.data1:
m1 = m1 + i
for j in self.data2:
m2 = m2 + j
media1 = m1 / len(self.data1)
media2 = m2 / len(self.data2)
data1_dif = []
for i in range(0, len(self.data1)):
ri = (self.data1[i] - media1)
data1_dif.append(ri)
data2_dif = []
for i in range(0, len(self.data1)):
rj = (self.data2[i] - media2)
data2_dif.append(rj)
cov_list= []
for i in range(0, len(data1_dif)):
cov_i = data1_dif[i] * data2_dif[i]
cov_list.append(cov_i)
k=0
for i in cov_list:
k = k + i
covariance = k / len(self.data1)
return covariance
########################################################################################################################################################################
import numpy as np
def moeda(prob,nlan):
k = np.random.uniform(0.0, 1.0, nlan)
cara = 0
for j in k:
if j <= prob:
cara += 1
return cara