-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgenerate.py
397 lines (301 loc) · 10.6 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import os
import argparse
import yaml
import librosa
import soundfile as sf
import sys
import numpy as np
from pydub import AudioSegment
import src.training_manager as manager
import torch
import torch.nn as nn
import torch.nn.functional as F
def read_yaml(fp):
with open(fp) as file:
# return yaml.load(file)
return yaml.load(file, Loader=yaml.Loader)
class RCBlock(nn.Module):
def __init__(self, feat_dim, ks, dilation, num_groups):
super().__init__()
# ks = 3 # kernel size
ksm1 = ks-1
mfd = feat_dim
di = dilation
self.num_groups = num_groups
self.relu = nn.LeakyReLU()
self.rec = nn.GRU(mfd, mfd, num_layers=1, batch_first=True, bidirectional=True)
self.conv = nn.Conv1d(mfd, mfd, ks, 1, ksm1*di//2, dilation=di, groups=num_groups)
self.gn = nn.GroupNorm(num_groups, mfd)
def init_hidden(self, batch_size, hidden_size):
num_layers = 1
num_directions = 2
hidden = torch.zeros(num_layers*num_directions, batch_size, hidden_size)
hidden.normal_(0, 1)
return hidden
def forward(self, x):
bs, mfd, nf = x.size()
hidden = self.init_hidden(bs, mfd).to(x.device)
r = x.transpose(1, 2)
r, _ = self.rec(r, hidden)
r = r.transpose(1, 2).view(bs, 2, mfd, nf).sum(1)
c = self.relu(self.gn(self.conv(r)))
x = x+r+c
return x
class BodyGBlock(nn.Module):
def __init__(self, input_dim, output_dim, middle_dim, num_groups):
super().__init__()
ks = 3 # filter size
mfd = middle_dim
self.input_dim = input_dim
self.output_dim = output_dim
self.mfd = mfd
self.num_groups = num_groups
# ### Main body ###
block = [
nn.Conv1d(input_dim, mfd, 3, 1, 1),
nn.GroupNorm(num_groups, mfd),
nn.LeakyReLU(),
RCBlock(mfd, ks, dilation=1, num_groups=num_groups),
nn.Conv1d(mfd, output_dim, 3, 1, 1),
]
self.block = nn.Sequential(*block)
def forward(self, x):
# ### Main ###
x = self.block(x)
return x
class HierarchicalGenerator(nn.Module):
def __init__(self, feat_dim, z_dim, z_scale_factors):
super().__init__()
# ks = 3 # filter size
mfd = 512
num_groups = 4
self.num_groups = num_groups
self.mfd = mfd
self.feat_dim = feat_dim
self.z_dim = z_dim
self.z_scale_factors = z_scale_factors
# ### Main body ###
self.block0 = BodyGBlock(z_dim, mfd, mfd, num_groups)
self.head0 = nn.Conv1d(mfd, feat_dim, 3, 1, 1)
blocks = []
heads = []
for scale_factor in z_scale_factors:
block = BodyGBlock(mfd, mfd, mfd, num_groups)
blocks.append(block)
head = nn.Conv1d(mfd, feat_dim, 3, 1, 1)
heads.append(head)
self.blocks = nn.ModuleList(blocks)
self.heads = nn.ModuleList(heads)
# ### Head ###
# self.head = nn.Conv1d(mfd, feat_dim, 3, 1, 1)
def forward(self, z):
# SBlock0
z_scale_factors = self.z_scale_factors
# nf = min(z.size(2), cond_.size(2))
# zc = torch.cat([z[:, :, :nf], cond_[:, :, :nf]], dim=1)
x_body = self.block0(z)
x_head = self.head0(x_body)
# print(len(self.blocks))
for ii, (block, head, scale_factor) in enumerate(zip(self.blocks, self.heads, z_scale_factors)):
x_body = F.interpolate(x_body, scale_factor=scale_factor, mode='nearest')
x_head = F.interpolate(x_head, scale_factor=scale_factor, mode='nearest')
# print(total_scale_factor, x.shape, cond_.shape)
# nf = min(x.size(2), cond_.size(2))
# c = torch.cat([x[:, :, :nf], cond_[:, :, :nf]], dim=1)
x_body = x_body + block(x_body)
x_head = x_head + head(x_body)
# Head
# shape=(bs, feat_dim, nf)
# x = torch.sigmoid(self.head(x))
# x = torch.sigmoid(x)
return x_head
class NonHierarchicalGenerator(nn.Module):
def __init__(self, feat_dim, z_dim):
super().__init__()
ks = 3 # filter size
mfd = 512
num_groups = 4
self.num_groups = num_groups
self.mfd = mfd
self.feat_dim = feat_dim
self.z_dim = z_dim
# ### Main body ###
blocks = [
nn.Conv1d(z_dim, mfd, 3, 1, 1),
nn.GroupNorm(num_groups, mfd),
nn.LeakyReLU(),
RCBlock(mfd, ks, dilation=2, num_groups=num_groups),
RCBlock(mfd, ks, dilation=4, num_groups=num_groups),
]
self.body = nn.Sequential(*blocks)
# ### All heads ###
self.head = nn.Conv1d(mfd, feat_dim, 3, 1, 1)
def forward(self, z):
# Body
x = self.body(z)
# Head
# shape=(bs, feat_dim, nf)
x = self.head(x)
return x
def main(args):
data_type = args.data_type
arch_type = args.arch_type
output_folder = args.output_folder
duration = args.duration
num_samples = args.num_samples
gid = args.gid
seed = args.seed
# ### Data type ###
assert(data_type in ['singing', 'speech', 'piano', 'violin'])
# ### Architecture type ###
if data_type == "singing":
assert(arch_type in ['nh', 'h', 'hc'])
elif data_type == "speech":
assert(arch_type in ['h', 'hc'])
elif data_type == "piano":
assert(arch_type in ['hc'])
elif data_type == "violin":
assert(arch_type in ['hc'])
if arch_type == 'nh':
arch_type = 'nonhierarchical'
elif arch_type == 'h':
arch_type = 'hierarchical'
elif arch_type == 'hc':
arch_type = 'hierarchical_with_cycle'
# ### Model type ###
model_type = f'{data_type}.{arch_type}'
# ### Model info ###
if output_folder is None:
output_folder = f'generated_samples/{model_type}'
os.makedirs(output_folder, exist_ok=True)
z_dim = 20
z_scale_factors = [2, 2, 2, 2]
z_total_scale_factor = np.prod(z_scale_factors)
feat_dim = 80
param_fp = f'models/{data_type}/params.generator.{arch_type}.pt'
mean_fp = f'models/{data_type}/mean.mel.npy'
std_fp = f'models/{data_type}/std.mel.npy'
mean = torch.from_numpy(np.load(mean_fp)).float().view(1, feat_dim, 1)
std = torch.from_numpy(np.load(std_fp)).float().view(1, feat_dim, 1)
if gid >= 0:
mean = mean.cuda(gid)
std = std.cuda(gid)
# ### Vocoder info ###
vocoder_dir = f'models/{data_type}/vocoder/'
vocoder_config_fp = os.path.join(vocoder_dir, 'args.yml')
vocoder_config = read_yaml(vocoder_config_fp)
# ### Import ###
# sys.path.append('..')
# ### Vocoder settings ###
hop_length = 256
sampling_rate = 22050
n_mel_channels = vocoder_config.n_mel_channels
ngf = vocoder_config.ngf
n_residual_layers = vocoder_config.n_residual_layers
sr = sampling_rate
num_frames = int(np.ceil(duration * (sr / hop_length)))
# ### Generator ###
if arch_type == 'nonhierarchical':
generator = NonHierarchicalGenerator(n_mel_channels, z_dim)
elif arch_type.startswith('hierarchical'):
generator = HierarchicalGenerator(n_mel_channels, z_dim, z_scale_factors)
generator.eval()
for p in generator.parameters():
p.requires_grad = False
manager.load_model(param_fp, generator, device_id='cpu')
if gid >= 0:
generator = generator.cuda(gid)
# ### Vocoder ###
vocoder_model_dir = f'models/{data_type}/vocoder/'
sys.path.append(vocoder_model_dir)
import modules
if data_type == 'speech':
vocoder_name = 'OriginalGenerator'
else:
vocoder_name = 'GRUGenerator'
MelGAN = getattr(modules, vocoder_name)
vocoder = MelGAN(n_mel_channels, ngf, n_residual_layers)
vocoder.eval()
vocoder_param_fp = os.path.join(vocoder_model_dir, 'params.pt')
vocoder.load_state_dict(torch.load(vocoder_param_fp))
if gid >= 0:
vocoder = vocoder.cuda(gid)
# ### Process ###
torch.manual_seed(seed)
for ii in range(num_samples):
print(f'Generate sample {ii}')
out_fp_wav = os.path.join(output_folder, f'{ii}.wav')
out_fp_mp3 = os.path.join(output_folder, f'{ii}.mp3')
if arch_type == 'nonhierarchical':
z = torch.zeros((1, z_dim, num_frames)).normal_(0, 1).float()
elif arch_type.startswith('hierarchical'):
z = torch.zeros((1, z_dim, int(np.ceil(num_frames / z_total_scale_factor)))).normal_(0, 1).float()
if gid >= 0:
z = z.cuda(gid)
with torch.set_grad_enabled(False):
with torch.cuda.device(gid):
# Generator
melspec_voc = generator(z)
melspec_voc = (melspec_voc * std) + mean
# Vocoder
audio = vocoder(melspec_voc)
audio = audio.squeeze().cpu().numpy()
# Save to wav
#librosa.output.write_wav(out_fp_wav, audio, sr=sr)
sf.write(out_fp_wav, audio, sr)
# Convert to mp3
AudioSegment.from_wav(out_fp_wav).export(out_fp_mp3, format="mp3")
os.remove(out_fp_wav)
def parse_argument():
parser = argparse.ArgumentParser(description='Uncondtional Singing Voice Generation')
parser.add_argument(
'--data_type', '-d',
dest="data_type",
default='singing',
help='Data type. Options: "singing"(Default)|"speech"|"piano"|"violin"',
)
parser.add_argument(
'--arch_type', '-a',
dest="arch_type",
default='hc',
help='Architecture type. Options: \
"nh" for non-hierarchical, available to singing|\
"h" for hierarchical, available to singing and speech|\
"hc" (Default) for hierarchical with cycle, available to all',
)
parser.add_argument(
'--output_folder', '-o',
dest='output_folder',
default=None,
help='Output folder',
)
parser.add_argument(
'--duration',
dest='duration',
default=10,
help='Sample duration (second)',
)
parser.add_argument(
'--num_samples', '-ns',
dest='num_samples',
default=5,
help='Number of samples to be generated',
)
parser.add_argument(
'--gid',
dest='gid',
default=-1,
type=int,
help='GPU id. Default: -1 for using cpu'
)
parser.add_argument(
'--seed',
dest='seed',
default=123,
help='Random seed. Default: 123'
)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_argument()
main(args)