|
| 1 | +#!/usr/bin/env python3 |
| 2 | +import multiprocessing as mp |
| 3 | + |
| 4 | +import numpy as np |
| 5 | + |
| 6 | + |
| 7 | +def project_points(hpts_world, K): |
| 8 | + uvd = hpts_world[:, :3] @ K.T |
| 9 | + # uvd /= uvd[:, 2] |
| 10 | + return uvd |
| 11 | + |
| 12 | + |
| 13 | +def process_chunk(start_idx, chunk_size, hpts_world, K): |
| 14 | + num_points = hpts_world.shape[0] |
| 15 | + end_idx = min(start_idx + chunk_size, num_points) |
| 16 | + return project_points(hpts_world[start_idx:end_idx, :], K) |
| 17 | + |
| 18 | + |
| 19 | +def project_points_multiprocessing(hpts_world, K, num_procs=3): |
| 20 | + num_points = hpts_world.shape[0] |
| 21 | + chunk_size = num_points // num_procs |
| 22 | + |
| 23 | + with mp.Pool(processes=num_procs) as pool: |
| 24 | + results = [ |
| 25 | + pool.apply_async( |
| 26 | + process_chunk, |
| 27 | + args=(i * chunk_size, chunk_size, hpts_world, K), |
| 28 | + ) for i in range(num_procs) |
| 29 | + ] |
| 30 | + output = np.vstack([result.get() for result in results]) |
| 31 | + |
| 32 | + return output |
| 33 | + |
| 34 | + |
| 35 | +if __name__ == "__main__": |
| 36 | + # Setup |
| 37 | + N = 100000 |
| 38 | + pts_world = np.random.rand(N, 3) |
| 39 | + hpts_world = np.hstack((pts_world, np.ones((N, 1)))) |
| 40 | + K = np.array([[1000, 0, 640], [0, 1000, 360], [0, 0, 1]]) |
| 41 | + |
| 42 | + # Project points in a multiprocessing way |
| 43 | + uvd = project_points_multiprocessing(hpts_world, K, num_procs=8) |
| 44 | + print(uvd) |
0 commit comments