-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcovid_dag.py
74 lines (62 loc) · 1.59 KB
/
covid_dag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta
from covid_etl import *
default_args = {
'owner': 'postgres',
'depends_on_past': 'False',
'start_date': datetime(2023, 4, 26),
'email': ['[email protected]'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=1)
}
dag = DAG(
'covid_dag',
default_args=default_args,
description='Our DAG for the Pandemic Analytics Pipeline',
schedule_interval=None
)
#tasks
task_1 = PythonOperator(
task_id = 'extract_population_data',
python_callable=transform_population_data,
dag=dag
)
task_2 = PythonOperator(
task_id = 'extract_education_data',
python_callable=transform_education_data,
dag=dag
)
task_3 = PythonOperator(
task_id = 'extract_employment_data',
python_callable=transform_employment_data,
dag=dag
)
task_4 = PythonOperator(
task_id = 'extract_poverty_data',
python_callable=transform_poverty_data,
dag=dag
)
task_5 = PythonOperator(
task_id = 'transform_location_dimension_table',
python_callable=dim_location,
dag=dag
)
task_6 = PythonOperator(
task_id = 'transform_population_dimension_table',
python_callable=dim_population,
dag=dag
)
task_7 = PythonOperator(
task_id = 'transform_fact_table',
python_callable=fact_table,
dag=dag
)
task_8 = PythonOperator(
task_id = 'load_data_into_the_data_base',
python_callable=final_stage,
dag=dag
)
task_1, task_2, task_3, task_4 >> [task_5, task_6, task_7]>>task_8