forked from rougier/dynamic-som
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure-dynamic.py
74 lines (63 loc) · 2.4 KB
/
figure-dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2009 Nicolas Rougier - INRIA - CORTEX Project
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Contact: CORTEX Project - INRIA
# INRIA Lorraine,
# Campus Scientifique, BP 239
# 54506 VANDOEUVRE-LES-NANCY CEDEX
# FRANCE
if __name__ == '__main__':
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from network import NG,SOM,DSOM
from distribution import uniform, normal, ring
size = 8
epochs = 20000
n = 10000
np.random.seed(12345)
samples_1 = uniform(n=n, center=(0.25,0.25), scale=(0.25,0.25))
samples_2 = uniform(n=n, center=(0.75,0.75), scale=(0.25,0.25))
samples_3 = uniform(n=n, center=(0.25,0.75), scale=(0.25,0.25))
samples_4 = uniform(n=n, center=(0.75,0.25), scale=(0.25,0.25))
print 'Neural gas'
np.random.seed(12345)
ng = NG((size,size,2))
ng.learn([samples_1, samples_2, samples_3, samples_4],
[2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8])
print 'Self-Organizing Map'
np.random.seed(12345)
som = SOM((size,size,2))
som.learn([samples_1, samples_2, samples_3, samples_4],
[2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8])
print 'Dynamic Self-Organizing Map'
np.random.seed(12345)
dsom = DSOM((size,size,2), elasticity=2.5)
dsom.learn([samples_1, samples_2, samples_3, samples_4],
[2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8])
fig = plt.figure(figsize=(21,8))
fig.patch.set_alpha(0.0)
axes = plt.subplot(1,3,1)
ng.plot(axes)
axes = plt.subplot(1,3,2)
som.plot(axes)
axes = plt.subplot(1,3,3)
dsom.plot(axes)
fig.savefig('dynamic.png',dpi=150)
#plt.show()