-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
360 lines (299 loc) · 13.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""
All function has to be
input1 : sentence | type : str | sentence_generated
input2 : sentence | type : str | sentence_gold
output : score | type float
"""
from transformers import AutoTokenizer, AutoModel
from transformers import DebertaV2ForSequenceClassification, DebertaV2Tokenizer
from accelerate import Accelerator
from accelerate.utils import gather_object
from tqdm import tqdm
import torch, gc
import torch.nn as nn
import numpy as np
from typing import List
from bert_score import score
import evaluate
from evaluate import load
import time
from selfcheckgpt.modeling_selfcheck import SelfCheckNLI
from nltk.translate.bleu_score import sentence_bleu
from openai import OpenAI
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EmbeddingModelWrapper():
DEFAULT_MODEL="sentence-transformers/all-mpnet-base-v2"
def __init__(self, model_path=None, bs=8):
if model_path is None: model_path = self.DEFAULT_MODEL
self.model, self.tokenizer = self.load_model(model_path)
self.bs = bs
self.cos = nn.CosineSimilarity(dim=1, eps=1e-6)
def load_model(self, model_path):
model = AutoModel.from_pretrained(
model_path,
).cuda()
model.eval()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
)
return model, tokenizer
def emb_mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def get_embeddings(self, sentences):
embeddings=torch.tensor([],device=device)
if self.bs is None:
batches=[sentences]
else:
batches = [sentences[i:i + self.bs] for i in range(0, len(sentences), self.bs)]
for sentences in batches:
encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to(device)
with torch.no_grad():
model_output = self.model(**encoded_input)
batch_embeddings=self.emb_mean_pooling(model_output, encoded_input['attention_mask'])
embeddings=torch.cat( (embeddings, batch_embeddings), dim=0 )
return embeddings
def get_similarities(self, x, y=None):
if y is None:
num_samples=x.shape[0]
similarities = [[0 for i in range(num_samples)] for f in range(num_samples)]
for row in tqdm(range(num_samples)):
# similarities[row][0:row+1]=em.cos(x[row].repeat(row+1,1), x[0:row+1]).tolist()
similarities[row][0:row+1] = self.cos(x[row].repeat(row+1, 1), x[0:row+1]).tolist()
return similarities
else:
return self.cos(x,y).tolist()
class ModelPredictionGenerator:
def __init__(self, model, tokenizer, eval_dataset, use_accelerate=False, bs=8, generation_config=None):
self.model=model
self.tokenizer=tokenizer
self.bs=bs
self.eval_prompts=self.messages_to_prompts( eval_dataset )
self.use_accelerate=use_accelerate
self.accelerator = Accelerator()
assert tokenizer.eos_token_id is not None
assert tokenizer.chat_template is not None
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
# llama-precise
if generation_config is None:
self.generation_config = {
"temperature": 0.7,
"top_p": 0.1,
"repetition_penalty": 1.18,
"top_k": 40,
"do_sample": True,
"max_new_tokens": 100,
"pad_token_id": tokenizer.pad_token_id
}
else:
self.generation_config = generation_config
def clear_cache(self):
torch.cuda.empty_cache()
gc.collect()
def messages_to_prompts(self, ds):
prompts=[]
for conversation in ds["messages"]:
for i,msg in enumerate(conversation):
if msg["role"]=="user":
prompts.append(
dict (
# prompt: format current messages up to the current user message and add a generation prompt
prompt=self.tokenizer.apply_chat_template(conversation[:i+1], add_generation_prompt=True, tokenize=False),
answer_ref=conversation[i+1]["content"]
)
)
return prompts
def get_batches(self, dataset, batch_size):
return [dataset[i:i + batch_size] for i in range(0, len(dataset), batch_size)]
def tokenize_batch(self, batch):
pad_side=self.tokenizer.padding_side
self.tokenizer.padding_side="left" # left pad for inference
prompts=[ item["prompt"] for item in batch ]
prompts_tok=self.tokenizer(
prompts,
return_tensors="pt",
padding='longest',
truncation=True,
max_length=self.tokenizer.model_max_length,
return_length=True,
pad_to_multiple_of=8,
add_special_tokens=False
).to(self.model.device)
self.tokenizer.padding_side=pad_side # restore orig. padding side
return prompts_tok
def generate_batch(self, batch_tok):
with torch.no_grad():
outputs_tok=self.model.generate(
input_ids=batch_tok["input_ids"],
attention_mask=batch_tok["attention_mask"],
**self.generation_config
).to("cpu")
outputs=[
# cut prompt from output
self.tokenizer.decode(
outputs_tok[i][outputs_tok[i] != self.tokenizer.pad_token_id][batch_tok["length"][i]:],
spaces_between_special_tokens=False,
skip_special_tokens=True
).strip()
for i,t in enumerate(outputs_tok) ]
return outputs
def run(self):
self.model.eval()
self.clear_cache()
if self.use_accelerate:
with self.accelerator.split_between_processes(list(range(len(self.eval_prompts)))) as eval_prompts_local_idcs:
eval_prompts_local = [self.eval_prompts[i] for i in eval_prompts_local_idcs]
else:
eval_prompts_local = self.eval_prompts
for batch in tqdm( self.get_batches(eval_prompts_local, self.bs) ):
batch_tok = self.tokenize_batch( batch )
answers = self.generate_batch( batch_tok )
for i in range(len(batch)):
batch[i]["answer_pred"]=answers[i]
batch[i]["GPU"]=self.accelerator.process_index
if self.use_accelerate:
return gather_object(eval_prompts_local)
else:
return eval_prompts_local
class NLIConfig_custom:
nli_model: str = "potsawee/deberta-v3-large-mnli"
class Deberta_Emb:
def __init__(
self,
nli_model: str = None,
device = None
):
nli_model = nli_model if nli_model is not None else NLIConfig_custom.nli_model
self.tokenizer = DebertaV2Tokenizer.from_pretrained(nli_model)
self.model = DebertaV2ForSequenceClassification.from_pretrained(nli_model)
self.model.eval()
if device is None:
device = torch.device("cpu")
self.model.to(device)
self.device = device
print("SelfCheck-NLI initialized to device", device)
@torch.no_grad()
def get_embeddings(
self,
sentence_1: str,
sentence_2: str,
):
"""
This function takes two sentences and returns the embeddings of both sentences.
:param sentence_1: str -- the first sentence (e.g. the gold standard)
:param sentence_2: str -- the second sentence (e.g. the generated sentence)
:return embeddings: list of two embeddings (one for each sentence)
"""
inputs_1 = self.tokenizer(sentence_1, return_tensors="pt", padding="longest", truncation=True)
inputs_2 = self.tokenizer(sentence_2, return_tensors="pt", padding="longest", truncation=True)
inputs_1 = inputs_1.to(self.device)
inputs_2 = inputs_2.to(self.device)
# Get the hidden states (embeddings) from the model by explicitly setting output_hidden_states=True
outputs_1 = self.model(**inputs_1, output_hidden_states=True)
outputs_2 = self.model(**inputs_2, output_hidden_states=True)
# Extract the last hidden state (embedding)
embeddings_1 = outputs_1.hidden_states[-1].mean(dim=1) # Mean pool over token dimension
embeddings_2 = outputs_2.hidden_states[-1].mean(dim=1) # Mean pool over token dimension
return [embeddings_1.cpu().numpy(), embeddings_2.cpu().numpy()]
# print(device)
# openaiKey = open("openaiKey.txt",'r').readline()
# print(openaiKey)
# def send_gpt_geval(cur_prompt):
# client = OpenAI(api_key=openaiKey)
# score = 0
# try:
# _response = client.chat.completions.create(model="gpt-4-0613",
# messages=[{"role": "system", "content": cur_prompt}],
# temperature=2,
# max_tokens=5,
# top_p=1,
# frequency_penalty=0,
# presence_penalty=0,
# stop=None,
# n=20)
# time.sleep(0.5)
# all_responses = [_response.choices[i].message.content for i in
# range(len(_response.choices))]
# scores = [float(response) for response in all_responses if response.replace('.', '', 1).isdigit()]
# if scores:
# score = sum(scores) / len(scores)
# else:
# print(f"No valid scores returned")
# except Exception as e:
# print(e)
# if ("limit" in str(e)):
# time.sleep(2)
# else:
# print('ignored')
# return score
# def geval_score(sentence_generated, sentence_gold):
# coh_prompt = open("./prompt/coh_detailed.txt").read() # /5
# con_prompt = open("./prompt/con_detailed.txt").read() # /5
# flu_prompt = open("./prompt/flu_detailed.txt").read() # /3
# rel_prompt = open("./prompt/rel_detailed.txt").read() # /5
# coh_prompt = coh_prompt.replace('{{Document}}', sentence_generated).replace('{{Summary}}', sentence_gold)
# con_prompt = con_prompt.replace('{{Document}}', sentence_generated).replace('{{Summary}}', sentence_gold)
# flu_prompt = flu_prompt.replace('{{Document}}', sentence_generated).replace('{{Summary}}', sentence_gold)
# rel_prompt = rel_prompt.replace('{{Document}}', sentence_generated).replace('{{Summary}}', sentence_gold)
# coh_score = send_gpt_geval(cur_prompt=coh_prompt)
# con_score = send_gpt_geval(cur_prompt=con_prompt)
# flu_score = send_gpt_geval(cur_prompt=flu_prompt)
# rel_score = send_gpt_geval(cur_prompt=rel_prompt)
# print("coh_score, con_score, flu_score, rel_score:", coh_score, con_score, flu_score, rel_score)
# return coh_score, con_score, flu_score, rel_score
def bert_score(sentence_generated,sentence_gold):
cands = [sentence_generated]
refs = [sentence_gold]
(P, R, F), hashname = score(cands, refs, lang="en", return_hash=True)
return F.mean().item()
selfcheck_nli = SelfCheckNLI(device=device)
def selfcheck_nli_score(sentence_generated,sentence_gold):
sent_scores_nli = selfcheck_nli.predict(
sentences = [sentence_gold],
sampled_passages = [sentence_generated],
)
return normalize_selfcheck_score(sent_scores_nli[0])
def normalize_selfcheck_score(score):
return 1 - score
def bleu_score(sentence_generated,sentence_gold):
references = [sentence_gold.split()]
if sentence_generated is None:
return 0
else:
candidate = sentence_generated.split()
score = sentence_bleu(references, candidate)
return score
def rougue_score(sentence_generated,sentence_gold):
references = [[sentence_gold]]
candidate = [sentence_generated]
rouge = evaluate.load('rouge')
results = rouge.compute(predictions=candidate, references=references)
score = results['rougeL']
return score
def semscore_score(sentence_generated, sentence_gold):
sentences = [sentence_gold, sentence_generated]
em = EmbeddingModelWrapper()
sentence_embeddings = em.get_embeddings(sentences)
similarities = em.get_similarities(sentence_embeddings.cuda())
return similarities[1][0]
def deberta_emb(sentence_generated,sentence_gold):
deberta_emb = Deberta_Emb(device=device)
embeddings = deberta_emb.get_embeddings(
sentence_1=sentence_gold,
sentence_2=sentence_generated,
)
return embeddings
def cosine_similarity(matrix1, matrix2):
# Flatten the matrices to 1D vectors
vec1 = matrix1.flatten()
vec2 = matrix2.flatten()
# Compute cosine similarity
dot_product = np.dot(vec1, vec2)
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
return dot_product / (norm1 * norm2)
def deberta_cos_score(sentence_generated,sentence_gold):
emb_result = deberta_emb(sentence_generated, sentence_gold)
return cosine_similarity(emb_result[0],emb_result[1])