-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsigproc.bib
286 lines (272 loc) · 11.1 KB
/
sigproc.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
@incollection{NIPS2012_4824,
title = {ImageNet Classification with Deep Convolutional Neural Networks},
author = {Alex Krizhevsky and Sutskever, Ilya and Geoffrey E. Hinton},
booktitle = {Advances in Neural Information Processing Systems 25},
editor = {F. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger},
pages = {1097--1105},
year = {2012},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf}
}
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on},
pages={248--255},
year={2009},
organization={IEEE}
}
@inproceedings{lowe1999object,
title={Object recognition from local scale-invariant features},
author={Lowe, David G},
booktitle={Computer vision, 1999. The proceedings of the seventh IEEE international conference on},
volume={2},
pages={1150--1157},
year={1999},
organization={Ieee}
}
@article{he2015deep,
title={Deep Residual Learning for Image Recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
journal={arXiv preprint arXiv:1512.03385},
year={2015}
}
@article{ioffe2015batch,
title={Batch normalization: Accelerating deep network training by reducing internal covariate shift},
author={Ioffe, Sergey and Szegedy, Christian},
journal={arXiv preprint arXiv:1502.03167},
year={2015}
}
@inproceedings{nair2010rectified,
title={Rectified linear units improve restricted boltzmann machines},
author={Nair, Vinod and Hinton, Geoffrey E},
booktitle={Proceedings of the 27th International Conference on Machine Learning (ICML-10)},
pages={807--814},
year={2010}
}
@inproceedings{glorot2010understanding,
title={Understanding the difficulty of training deep feedforward neural networks},
author={Glorot, Xavier and Bengio, Yoshua},
booktitle={International conference on artificial intelligence and statistics},
pages={249--256},
year={2010}
}
@article{srivastava2014dropout,
title={Dropout: A simple way to prevent neural networks from overfitting},
author={Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
journal={The Journal of Machine Learning Research},
volume={15},
number={1},
pages={1929--1958},
year={2014},
publisher={JMLR. org}
}
@article{chapelle2014simple,
title={Simple and scalable response prediction for display advertising},
author={Chapelle, Olivier and Manavoglu, Eren and Rosales, Romer},
journal={ACM Transactions on Intelligent Systems and Technology (TIST)},
volume={5},
number={4},
pages={61},
year={2014},
publisher={ACM}
}
@inproceedings{richardson2007predicting,
title={Predicting clicks: estimating the click-through rate for new ads},
author={Richardson, Matthew and Dominowska, Ewa and Ragno, Robert},
booktitle={Proceedings of the 16th international conference on World Wide Web},
pages={521--530},
year={2007},
organization={ACM}
}
@inproceedings{oentaryo2014predicting,
title={Predicting response in mobile advertising with hierarchical importance-aware factorization machine},
author={Oentaryo, Richard J and Lim, Ee-Peng and Low, Jia-Wei and Lo, David and Finegold, Michael},
booktitle={Proceedings of the 7th ACM international conference on Web search and data mining},
pages={123--132},
year={2014},
organization={ACM}
}
@inproceedings{rendle2010factorization,
title={Factorization machines},
author={Rendle, Steffen},
booktitle={Data Mining (ICDM), 2010 IEEE 10th International Conference on},
pages={995--1000},
year={2010},
organization={IEEE}
}
@inproceedings{azimi2012impact,
title={The impact of visual appearance on user response in online display advertising},
author={Azimi, Javad and Zhang, Ruofei and Zhou, Yang and Navalpakkam, Vidhya and Mao, Jianchang and Fern, Xiaoli},
booktitle={Proceedings of the 21st international conference companion on World Wide Web},
pages={457--458},
year={2012},
organization={ACM}
}
@inproceedings{cheng2012multimedia,
title={Multimedia features for click prediction of new ads in display advertising},
author={Cheng, Haibin and Zwol, Roelof van and Azimi, Javad and Manavoglu, Eren and Zhang, Ruofei and Zhou, Yang and Navalpakkam, Vidhya},
booktitle={Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining},
pages={777--785},
year={2012},
organization={ACM}
}
@inproceedings{Mo:2015:IFL:2832747.2832769,
author = {Mo, Kaixiang and Liu, Bo and Xiao, Lei and Li, Yong and Jiang, Jie},
title = {Image Feature Learning for Cold Start Problem in Display Advertising},
booktitle = {Proceedings of the 24th International Conference on Artificial Intelligence},
series = {IJCAI'15},
year = {2015},
isbn = {978-1-57735-738-4},
location = {Buenos Aires, Argentina},
pages = {3728--3734},
numpages = {7},
url = {http://dl.acm.org/citation.cfm?id=2832747.2832769},
acmid = {2832769},
publisher = {AAAI Press},
}
@inproceedings{he2014practical,
title={Practical lessons from predicting clicks on ads at facebook},
author={He, Xinran and Pan, Junfeng and Jin, Ou and Xu and others},
booktitle={Proceedings of 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
pages={1--9},
year={2014},
organization={ACM}
}
@article{hinton2012deep,
title={Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups},
author={Hinton, Geoffrey and Deng, Li and Yu, Dong and Dahl, George E and Mohamed and others},
journal={Signal Processing Magazine, IEEE},
volume={29},
number={6},
pages={82--97},
year={2012},
publisher={IEEE}
}
@inproceedings{jia2014caffe,
title={Caffe: Convolutional architecture for fast feature embedding},
author={Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
booktitle={Proceedings of the ACM International Conference on Multimedia},
pages={675--678},
year={2014},
organization={ACM}
}
@article{he2015delving,
title={Delving deep into rectifiers: Surpassing human-level performance on imagenet classification},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
journal={arXiv preprint arXiv:1502.01852},
year={2015}
}
@incollection{zeiler2014visualizing,
title={Visualizing and understanding convolutional networks},
author={Zeiler, Matthew D and Fergus, Rob},
booktitle={Computer Vision--ECCV 2014},
pages={818--833},
year={2014},
publisher={Springer}
}
@article{simonyan2014very,
title={Very deep convolutional networks for large-scale image recognition},
author={Simonyan, Karen and Zisserman, Andrew},
journal={arXiv preprint arXiv:1409.1556},
year={2014}
}
@inproceedings{cheng2012multimedia,
title={Multimedia features for click prediction of new ads in display advertising},
author={Cheng, Haibin and Zwol, Roelof van and Azimi, Javad and Manavoglu, Ruofei and Zhou, Yang and Navalpakkam, Vidhya},
booktitle={Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining},
pages={777--785},
year={2012},
organization={ACM}
}
@inproceedings{chakrabarti2008contextual,
title={Contextual advertising by combining relevance with click feedback},
author={Chakrabarti, Deepayan and Agarwal, Deepak and Josifovski, Vanja},
booktitle={Proceedings of the 17th international conference on World Wide Web},
pages={417--426},
year={2008},
organization={ACM}
}
@inproceedings{dave2010learning,
title={Learning the click-through rate for rare/new ads from similar ads},
author={Dave, Kushal S and Varma, Vasudeva},
booktitle={Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval},
pages={897--898},
year={2010},
organization={ACM}
}
@article{zhang2016deep,
title={Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction},
author={Zhang, Weinan and Du, Tianming and Wang, Jun},
journal={arXiv preprint arXiv:1601.02376},
year={2016}
}
@article{rendle2012factorization,
title={Factorization machines with libFM},
author={Rendle, Steffen},
journal={ACM Transactions on Intelligent Systems and Technology (TIST)},
volume={3},
number={3},
pages={57},
year={2012},
publisher={ACM}
}
@article{simonyan2013deep,
title={Deep inside convolutional networks: Visualising image classification models and saliency maps},
author={Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew},
journal={arXiv preprint arXiv:1312.6034},
year={2013}
}
@inproceedings{ren2015faster,
title={Faster R-CNN: Towards real-time object detection with region proposal networks},
author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
booktitle={Advances in Neural Information Processing Systems},
pages={91--99},
year={2015}
}
@inproceedings{simonyan2014two,
title={Two-stream convolutional networks for action recognition in videos},
author={Simonyan, Karen and Zisserman, Andrew},
booktitle={Advances in Neural Information Processing Systems},
pages={568--576},
year={2014}
}
@inproceedings{weinberger2009feature,
title={Feature hashing for large scale multitask learning},
author={Weinberger, Kilian and Dasgupta, Anirban and Langford, John and Smola, Alex and Attenberg, Josh},
booktitle={Proceedings of the 26th Annual International Conference on Machine Learning},
pages={1113--1120},
year={2009},
organization={ACM}
}
@inproceedings{mcmahan2013ad,
title={Ad click prediction: a view from the trenches},
author={McMahan, H Brendan and Holt, Gary and Sculley, David and Young, Michael and Ebner, Dietmar and Grady, Julian and Nie, Lan and Phillips, Todd and Davydov, Eugene and Golovin, Daniel and others},
booktitle={Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining},
pages={1222--1230},
year={2013},
organization={ACM}
}
@inproceedings{mahdian2007pay,
title={Pay-per-action model for online advertising},
author={Mahdian, Mohammad and Tomak, Kerem},
booktitle={Proceedings of the 1st international workshop on Data mining and audience intelligence for advertising},
pages={1--6},
year={2007},
organization={ACM}
}
@inproceedings{mei2011internet,
title={Internet multimedia advertising: techniques and technologies},
author={Mei, Tao and Zhang, Ruofei and Hua, Xian-Sheng},
booktitle={Proceedings of the 19th ACM international conference on Multimedia},
pages={627--628},
year={2011},
organization={ACM}
}
@inproceedings{yan2014coupled,
title={Coupled group lasso for web-scale ctr prediction in display advertising},
author={Yan, Ling and Li, Wu-jun and Xue, Gui-Rong and Han, Dingyi},
booktitle={Proceedings of the 31st International Conference on Machine Learning (ICML-14)},
pages={802--810},
year={2014}
}