-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
executable file
·386 lines (324 loc) · 15.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#!/usr/bin/env python
import os
import time
import adamod
import yaml
import numpy as np
import zipfile
from tqdm import tqdm
from arg_parser import get_parser
from datetime import datetime
from arg_types import arg_boolean, arg_dict
from tensorboardX import SummaryWriter
from collections import OrderedDict
# torch
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.nn.functional as F
from model import s2tnet
from feeder import Feeder
from utilies import *
localtime = time.asctime(time.localtime(time.time()))
x_writer = SummaryWriter('writer/'+ localtime)
test_result_file = 'prediction_result.txt'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Processor():
"""
Processor for s2tnet
"""
def __init__(self, arg):
self.arg = arg
self.save_arg()
self.load_data()
self.load_model()
self.load_optimizer()
self.best_fde=5
self.best_ade=1.25
with open('{}/log.txt'.format(self.arg.work_dir), 'w') as f:
print('start', file=f)
def start(self):
if self.arg.phase == 'train':
if self.arg.load_checkpt:
self.load_checkpoint(self.arg.test_model,self.arg.ade)
for epoch in range(self.arg.start_epoch, self.arg.num_epoch):
eval_model_flag = ((epoch + 1) % self.arg.eval_interval == 0) or (
epoch + 1 == self.arg.num_epoch)
######################Training##################
if self.arg.val_test:
self.val_epoch(epoch)
else:
self.train_epoch(epoch)
######################valuing##################
if eval_model_flag or epoch > self.arg.eval_interval:
wsade,wsfde=self.val_epoch(epoch)
if wsade < self.best_ade:
self.best_ade = wsade
self.best_epoch = epoch
self.best_fde = wsfde
self.save_checkpoint(self.best_epoch,self.best_ade)
if self.arg.phase == 'test':
self.load_checkpoint(self.arg.test_model,self.arg.ade)
self.test_epoch()
def train_epoch(self, epoch):
self.model.train()
self.print_log('Training epoch: {}'.format(epoch))
loader = self.data_loader['train']
lr = self.arg.base_lr
if self.arg.optimizer is not 'NoamOpt':
lr = self.adjust_learning_rate(epoch)
loss_value = []
self.record_time()
timer = dict(dataloader=0.001, model=0.001, statistics=0.001)
# for batch_idx, (features,masks,mean_xy,neighbors) in enumerate(loader):
for batch_idx, batch_data in enumerate(loader):
features,masks,mean,neighbors = batch_data
batch_in = features,masks,neighbors
time_horizon = features.shape[1]
timer['dataloader'] += self.split_time()
for current_frame in range(2, time_horizon):
predicted, _ = self.model(
batch_in,current_frame,device,is_train = True)
mask=masks[:, current_frame:].to(device)
ground_truth=features[:, current_frame:,:,-2:].to(device)
predict_traj = predicted * mask
ground_truth = ground_truth * mask
# backward
self.optimizer.zero_grad()
error_order=1
error=torch.abs(predict_traj - ground_truth) ** error_order
error = error.sum(dim=3).sum(dim=2)
overall_mask = mask.sum(dim=3).sum(dim=2)
loss = error.sum() / torch.max(overall_mask.sum(), torch.ones(1,).to(device))
loss.backward()
# total_loss.backward()
if self.arg.optimizer == 'NoamOpt':
self.optim.step()
else:
self.optimizer.step()
timer['model'] += self.split_time()
loss_value.append(loss.data.item())
# record log
if batch_idx % self.arg.log_interval == 0:
# x_writer.add_graph(self.model,input_to_model=(input_data,origin_A,False))
step = epoch * len(loader) + batch_idx
x_writer.add_scalar('loss-Train', loss.data.item(), step)
if self.arg.optimizer == 'NoamOpt':
self.print_log(
'\t|Epoch:{:>5}/{:>5}|\tIteration:{:>5}/{:>5}|\tLoss:{:.5f}|lr: {:.4f}|'.format(
epoch, self.arg.num_epoch,batch_idx, len(loader), loss.data.item(), self.optim._rate))
else:
self.print_log(
'\t|Epoch:{:>5}/{:>5}|\tIteration:{:>5}/{:>5}|\tLoss:{:.5f}|lr: {:.4f}|'.format(
epoch, self.arg.num_epoch,batch_idx, len(loader), loss.data.item(), lr))
@torch.no_grad()
def val_epoch(self, epoch):
self.model.eval()
self.print_log('Eval epoch: {}'.format(epoch))
loader = self.data_loader['val']
sum_list = []
number_list = []
h_len = self.arg.history_len
for batch_data in loader:
features,masks,mean,neighbors = batch_data
batch_in = features,masks,neighbors
b,t,v,c = features.shape
decoder_input = torch.zeros((b, 1, v, 2)).to(device)
for i in range(h_len):
predicted,att = self.model(
batch_in, h_len, device, decoder_input, False)
decoder_input = torch.cat((decoder_input, predicted[:, -1:]), 1)
predicted_xy=decoder_input[:, 1:].cumsum(1)
predicted_trajectory = predicted_xy + features[:,h_len-1:h_len, :, :2].to(device)
ground_truth = features[:, h_len:,:,:2].to(device) * masks[:, h_len:].to(device)
predict_traj = predicted_trajectory * masks[:, h_len:].to(device)
error_order=2
error=torch.abs(predict_traj - ground_truth) ** error_order
error = error.sum(dim=3).sum(dim=2)
overall_mask = masks[:, h_len:].sum(dim=3).sum(dim=2)
number_list.extend(overall_mask.detach().cpu().numpy())
sum_list.extend(error.detach().cpu().numpy())
sum_time = np.sum(np.array(sum_list)**0.5, axis=0)
num_time = np.sum(np.array(number_list), axis=0)
overall_loss_time = (sum_time / num_time)
overall_log = '[{:>15}] [FDE: {:.3f}] [ADE: {:.3f}] [best_FDE: {:.3f}] [best_ADE: {:.3f}] 7--12s: {}'.format(
'Unweighted Sum', overall_loss_time[-1],np.mean(overall_loss_time),self.best_fde,self.best_ade,
' '.join(['{:.3f}'.format(x) for x in list(overall_loss_time) + [np.sum(overall_loss_time)]]))
self.print_log(overall_log)
WSADE=np.mean(overall_loss_time)
WSFDE=overall_loss_time[-1]
info = {
'Ade': WSADE,
'Fde': WSFDE
}
for tag, value in info.items():
x_writer.add_scalar(tag, value, epoch)
return WSADE,WSFDE
def test_epoch(self):
self.model.eval()
with open(test_result_file, 'w') as writer:
loader = self.data_loader['test']
h_len = self.arg.history_len
for batch_data in tqdm(loader):
features,masks,mean,origin,neighbors = batch_data
batch_in = features,masks,neighbors
b,t,v,c = features.shape
decoder_input = torch.zeros((b, 1, v, 2)).to(device)
for i in range(h_len):
predicted,att = self.model(
batch_in, h_len, device, decoder_input, False)
decoder_input = torch.cat((decoder_input, predicted[:, -1:]), 1)
predicted_xy=decoder_input[:, 1:].cumsum(1)
predicted_trajectory = predicted_xy + features[:,h_len-1:h_len, :, :2].to(device)
now_pred = predicted_trajectory.detach().cpu().numpy()
now_mean_xy = mean.detach().cpu().numpy()
now_mask = masks[:, -1].detach().cpu().numpy()
origin=origin.detach().cpu().numpy()
# batch
for n_pred, n_mean_xy, n_data, n_mask in zip(now_pred, now_mean_xy, origin, now_mask):
# time
for time_ind, n_pre in enumerate(n_pred):
#nodes
for info, pred, mask in zip(n_data[-1], n_pre+n_mean_xy, n_mask):
if mask:
information = info.copy()
information[0] = information[0] + time_ind + 1
result = ' '.join(information.astype(str)) \
+ ' ' + ' '.join(pred.astype(str)) + '\n'
writer.write(result)
with zipfile.ZipFile('prediction_result.zip', mode='w', compression=zipfile.ZIP_DEFLATED) as zf:
zf.write(test_result_file)
def save_checkpoint(self, epoch,ade):
filename='epoch_{:04}_{:06.00f}.pt'.format(epoch,ade*10000)
try:
torch.save({'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()
}, os.path.join(self.arg.work_dir, filename))
except Exception as e:
print("An error occurred while saving the checkpoint:")
print(e)
def load_checkpoint(self, best_epoch,ade):
filename='epoch_{:04}_{:06.00f}.pt'.format(best_epoch,ade)
# filename='epoch_{:04}_{:04.01f}.pt'.format(best_epoch,ade)
ckpt_path = os.path.join(self.arg.work_dir, filename)
checkpoint = torch.load(ckpt_path)
self.arg.start_epoch = checkpoint['epoch']
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print('Successfull loaded from {}'.format(ckpt_path))
def load_data(self):
self.data_loader = dict()
self.trainLoader = Feeder(
self.arg.train_data_path,self.arg.train_data_cache,self.arg.train_percent,'train')
self.testLoader = Feeder(
self.arg.test_data_path,self.arg.test_data_cache,self.arg.train_percent,'test')
self.valLoader = Feeder(
self.arg.train_data_path,self.arg.train_data_cache,self.arg.train_percent,'val')
self.data_loader['train'] = torch.utils.data.DataLoader(
dataset=self.trainLoader,
batch_size=self.arg.batch_size,
shuffle=True,
num_workers=self.arg.num_worker)
self.data_loader['val'] = torch.utils.data.DataLoader(
dataset=self.valLoader,
batch_size=self.arg.val_batch_size,
shuffle=True,
num_workers=self.arg.num_worker)
self.data_loader['test'] = torch.utils.data.DataLoader(
dataset=self.testLoader,
batch_size=self.arg.test_batch_size,
shuffle=False,
num_workers=self.arg.num_worker)
def load_model(self):
self.model = s2tnet(d_model=self.arg.d_model)
self.model = nn.DataParallel(self.model)
self.model.to(device)
def load_optimizer(self):
if self.arg.optimizer == 'SGD':
self.optimizer = optim.SGD(
self.model.parameters(),
lr=self.arg.base_lr,
momentum=0.9,
nesterov=self.arg.nesterov,
weight_decay=self.arg.weight_decay)
elif self.arg.optimizer == 'Adam':
self.optimizer = optim.Adam(
self.model.parameters(),
lr=self.arg.base_lr,
weight_decay=self.arg.weight_decay)
elif self.arg.optimizer == 'Adamod':
self.optimizer = adamod.AdaMod(
self.model.parameters(), lr=self.arg.base_lr, beta3=0.999)
elif self.arg.optimizer == 'NoamOpt':
self.optim = NoamOpt(self.arg.d_model, self.arg.factor, self.arg.warmup,
torch.optim.Adam(self.model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
self.optimizer=self.optim.optimizer
else:
raise ValueError()
# save all arg in work directory with yaml format
def save_arg(self):
# save arg
arg_dict = vars(self.arg)
if not os.path.exists(self.arg.work_dir):
os.makedirs(self.arg.work_dir)
with open('{}/config.yaml'.format(self.arg.work_dir), 'w') as f:
yaml.dump(arg_dict, f)
def adjust_learning_rate(self, epoch):
lr = self.arg.base_lr
step = self.arg.step
lr = self.arg.base_lr * (
self.arg.base_lr ** np.sum(epoch >= np.array(step)))
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
return lr
def print_time(self):
localtime = time.asctime(time.localtime(time.time()))
self.print_log("Local current time : " + localtime)
# print log in screen and save in log.txt
def print_log(self, str, print_time=True):
if print_time:
localtime = time.asctime(time.localtime(time.time()))
str = "[ " + localtime + ' ] ' + str
print(str)
if self.arg.print_log:
with open('{}/log.txt'.format(self.arg.work_dir), 'a') as f:
print(str, file=f)
# save current time
def record_time(self):
self.cur_time = time.time()
return self.cur_time
# get time interval from last record time to now
def split_time(self):
split_time = time.time() - self.cur_time
self.record_time()
return split_time
def display_result(self, pra_results, predict_result_lable='Train_epoch'):
sum_list, num_list = pra_results
sum_time = np.sum(sum_list**0.5, axis=0)
num_time = np.sum(num_list, axis=0)
overall_loss_time = (sum_time / num_time)
overall_log = '[{:>15}] [FDE: {:.3f}] [ADE: {:.3f}] 7--12s: {}'.format(
predict_result_lable, overall_loss_time[-1],
np.mean(overall_loss_time),
' '.join(['{:.3f}'.format(x) for x in list(overall_loss_time) + [np.sum(overall_loss_time)]]))
self.print_log(overall_log)
return overall_loss_time
seed_torch()
if __name__ == '__main__':
parser = get_parser()
p = parser.parse_args()
print(p.config)
if p.config is not None:
with open(p.config, 'r') as f:
default_arg = yaml.load(f)
key = vars(p).keys()
for k in default_arg.keys():
if k not in key:
print('WRONG ARG: {}'.format(k))
assert (k in key)
parser.set_defaults(**default_arg)
arg = parser.parse_args()
processor = Processor(arg)
processor.start()