-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patharg_parser.py
executable file
·72 lines (61 loc) · 3.19 KB
/
arg_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import sys
import os
from arg_types import arg_boolean, arg_dict
dataset_name = 'apollo'
home_dir = os.getcwd()
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
# parameter priority: command line > config > default
parser = argparse.ArgumentParser(
description='Spatial Temporal Graph Convolution Network')
parser.add_argument('--work_dir', default=home_dir+'/checkpoints/' + dataset_name)
parser.add_argument('--config', default=home_dir+'/config/apolloscape/train.yaml')
parser.add_argument('--phase', default='train')
parser.add_argument('--log_interval', type=int, default=100,
help='the interval for printing messages (#iteration)')
parser.add_argument('--eval_interval', type=int, default=5,
help='the interval for evaluating models (#iteration)')
parser.add_argument('--print_log', type=str2bool, default=True,
help='print logging or not')
parser.add_argument('--test_model', type=int, default=5)
parser.add_argument('--load_checkpt', type=str2bool, default=False)
parser.add_argument(
'--feeder', default='feeder.Feeder', help='data loader will be used')
parser.add_argument('--num_worker', type=int, default=10)
parser.add_argument('--train_data_path', default=' ')
parser.add_argument('--test_data_path', default=' ')
parser.add_argument('--train_data_cache', default=' ')
parser.add_argument('--test_data_cache', default=' ')
parser.add_argument('--train_percent', type=float, default=0.8)
parser.add_argument(
'--base_lr', type=float, default=0.1, help='initial learning rate')
parser.add_argument('--step', type=int, default=[20, 40, 60], nargs='+',
help='the epoch where optimizer reduce the learning rate')
parser.add_argument('--optimizer', default='Adam',help='type of optimizer')
parser.add_argument(
'--batch_size', type=int, default=256, help='training batch size')
parser.add_argument(
'--test_batch_size', type=int, default=256, help='test batch size')
parser.add_argument(
'--val_batch_size', type=int, default=256, help='value batch size')
parser.add_argument('--start_epoch', type=int, default=0,
help='start training from which epoch')
parser.add_argument('--num_epoch', type=int, default=120,
help='stop training in which epoch')
parser.add_argument('--weight_decay', type=float, default=0.0005,
help='weight decay for optimizer')
parser.add_argument('--ade', type=float, default=800.0)
parser.add_argument('--factor', type=float, default=1.)
parser.add_argument('--warmup', type=int, default=10)
parser.add_argument('--d_model', type=int, default=32)
parser.add_argument('--predict_len', type=int, default=6)
parser.add_argument('--history_len', type=int, default=6)
parser.add_argument('--val_test', type=str2bool, default=False)
return parser