-
Notifications
You must be signed in to change notification settings - Fork 225
/
train_ddpg_gym.py
173 lines (154 loc) · 7.04 KB
/
train_ddpg_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import sys
import chainer
from chainer import optimizers
import gym
from gym import spaces
import numpy as np
import chainerrl
from chainerrl.agents.ddpg import DDPG
from chainerrl.agents.ddpg import DDPGModel
from chainerrl import experiments
from chainerrl import explorers
from chainerrl import misc
from chainerrl import policy
from chainerrl import q_functions
from chainerrl import replay_buffer
def main():
import logging
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--env', type=str, default='Humanoid-v2')
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--final-exploration-steps',
type=int, default=10 ** 6)
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--steps', type=int, default=10 ** 7)
parser.add_argument('--n-hidden-channels', type=int, default=300)
parser.add_argument('--n-hidden-layers', type=int, default=3)
parser.add_argument('--replay-start-size', type=int, default=5000)
parser.add_argument('--n-update-times', type=int, default=1)
parser.add_argument('--target-update-interval',
type=int, default=1)
parser.add_argument('--target-update-method',
type=str, default='soft', choices=['hard', 'soft'])
parser.add_argument('--soft-update-tau', type=float, default=1e-2)
parser.add_argument('--update-interval', type=int, default=4)
parser.add_argument('--eval-n-runs', type=int, default=100)
parser.add_argument('--eval-interval', type=int, default=10 ** 5)
parser.add_argument('--gamma', type=float, default=0.995)
parser.add_argument('--minibatch-size', type=int, default=200)
parser.add_argument('--render', action='store_true')
parser.add_argument('--demo', action='store_true')
parser.add_argument('--use-bn', action='store_true', default=False)
parser.add_argument('--monitor', action='store_true')
parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
args = parser.parse_args()
args.outdir = experiments.prepare_output_dir(
args, args.outdir, argv=sys.argv)
print('Output files are saved in {}'.format(args.outdir))
# Set a random seed used in ChainerRL
misc.set_random_seed(args.seed, gpus=(args.gpu,))
def clip_action_filter(a):
return np.clip(a, action_space.low, action_space.high)
def reward_filter(r):
return r * args.reward_scale_factor
def make_env(test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = chainerrl.wrappers.Monitor(env, args.outdir)
if isinstance(env.action_space, spaces.Box):
misc.env_modifiers.make_action_filtered(env, clip_action_filter)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if args.render and not test:
env = chainerrl.wrappers.Render(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.max_episode_steps
obs_size = np.asarray(env.observation_space.shape).prod()
action_space = env.action_space
action_size = np.asarray(action_space.shape).prod()
if args.use_bn:
q_func = q_functions.FCBNLateActionSAQFunction(
obs_size, action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
normalize_input=True)
pi = policy.FCBNDeterministicPolicy(
obs_size, action_size=action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
min_action=action_space.low, max_action=action_space.high,
bound_action=True,
normalize_input=True)
else:
q_func = q_functions.FCSAQFunction(
obs_size, action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers)
pi = policy.FCDeterministicPolicy(
obs_size, action_size=action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
min_action=action_space.low, max_action=action_space.high,
bound_action=True)
model = DDPGModel(q_func=q_func, policy=pi)
opt_a = optimizers.Adam(alpha=args.actor_lr)
opt_c = optimizers.Adam(alpha=args.critic_lr)
opt_a.setup(model['policy'])
opt_c.setup(model['q_function'])
opt_a.add_hook(chainer.optimizer.GradientClipping(1.0), 'hook_a')
opt_c.add_hook(chainer.optimizer.GradientClipping(1.0), 'hook_c')
rbuf = replay_buffer.ReplayBuffer(5 * 10 ** 5)
def random_action():
a = action_space.sample()
if isinstance(a, np.ndarray):
a = a.astype(np.float32)
return a
ou_sigma = (action_space.high - action_space.low) * 0.2
explorer = explorers.AdditiveOU(sigma=ou_sigma)
agent = DDPG(model, opt_a, opt_c, rbuf, gamma=args.gamma,
explorer=explorer, replay_start_size=args.replay_start_size,
target_update_method=args.target_update_method,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
soft_update_tau=args.soft_update_tau,
n_times_update=args.n_update_times,
gpu=args.gpu, minibatch_size=args.minibatch_size)
if len(args.load) > 0:
agent.load(args.load)
eval_env = make_env(test=True)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
experiments.train_agent_with_evaluation(
agent=agent, env=env, steps=args.steps,
eval_env=eval_env, eval_n_steps=None,
eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval,
outdir=args.outdir,
train_max_episode_len=timestep_limit)
if __name__ == '__main__':
main()