forked from xiaochengcike/high-res-fingerprint-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
145 lines (118 loc) · 4.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import argparse
import numpy as np
import tensorflow as tf
from models import description
import polyu
import utils
import validate
FLAGS = None
def train(dataset, log_dir):
with tf.Graph().as_default():
# gets placeholders for images and labels
images_pl, labels_pl = utils.placeholder_inputs()
# build net graph
net = description.Net(images_pl, FLAGS.dropout)
# build training related ops
net.build_loss(labels_pl, FLAGS.weight_decay)
net.build_train(FLAGS.learning_rate)
# builds validation graph
val_net = description.Net(images_pl, training=False, reuse=True)
# add summary to plot loss and rank
eer_pl = tf.placeholder(tf.float32, shape=(), name='eer_pl')
loss_pl = tf.placeholder(tf.float32, shape=(), name='loss_pl')
eer_summary_op = tf.summary.scalar('eer', eer_pl)
loss_summary_op = tf.summary.scalar('loss', loss_pl)
# early stopping vars
best_eer = 1
faults = 0
saver = tf.train.Saver()
with tf.Session() as sess:
# initialize summary and variables
summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
sess.run(tf.global_variables_initializer())
# 'compute_descriptors' function for validation
def compute_descriptors(img, pts):
return utils.trained_descriptors(
img,
pts,
patch_size=dataset.train.images_shape[1],
session=sess,
imgs_pl=images_pl,
descs_op=val_net.descriptors)
# train loop
for step in range(1, FLAGS.steps + 1):
# fill feed dict
feed_dict = utils.fill_feed_dict(dataset.train, images_pl, labels_pl,
FLAGS.batch_size, FLAGS.augment)
# train step
loss_value, _ = sess.run([net.loss, net.train], feed_dict=feed_dict)
# write loss summary periodically
if step % 100 == 0:
print('Step {}: loss = {}'.format(step, loss_value))
# summarize loss
loss_summary = sess.run(
loss_summary_op, feed_dict={loss_pl: loss_value})
summary_writer.add_summary(loss_summary, step)
# evaluate model periodically
if step % 500 == 0 and dataset.val is not None:
print('Validation:')
eer = validate.matching.validation_eer(dataset.val,
compute_descriptors)
print('EER = {}'.format(eer))
# summarize eer
eer_summary = sess.run(eer_summary_op, feed_dict={eer_pl: eer})
summary_writer.add_summary(eer_summary, global_step=step)
# early stopping
if eer < best_eer:
# update early stopping vars
best_eer = eer
faults = 0
saver.save(
sess, os.path.join(log_dir, 'model.ckpt'), global_step=step)
else:
faults += 1
if faults >= FLAGS.tolerance:
print('Training stopped early')
break
# if no validation set, save model when training completes
if dataset.val is None:
saver.save(sess, os.path.join(log_dir, 'model.ckpt'))
print('Finished')
print('best EER = {}'.format(best_eer))
def main():
# create folders to save train resources
log_dir = utils.create_dirs(FLAGS.log_dir_path, FLAGS.batch_size,
FLAGS.learning_rate)
# load dataset
print('Loading description dataset...')
dataset = polyu.description.Dataset(FLAGS.dataset_path)
print('Loaded')
# train
train(dataset, log_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset_path', required=True, type=str, help='path to dataset')
parser.add_argument(
'--learning_rate', type=float, default=1e-1, help='learning rate')
parser.add_argument(
'--log_dir_path', type=str, default='log', help='logging directory')
parser.add_argument(
'--tolerance', type=int, default=5, help='early stopping tolerance')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument(
'--steps', type=int, default=100000, help='maximum training steps')
parser.add_argument(
'--augment',
action='store_true',
help='use this flag to perform dataset augmentation')
parser.add_argument(
'--dropout', type=float, help='dropout rate in last convolutional layer')
parser.add_argument('--weight_decay', type=float, help='weight decay lambda')
parser.add_argument('--seed', type=int, help='random seed')
FLAGS = parser.parse_args()
# set random seeds
tf.set_random_seed(FLAGS.seed)
np.random.seed(FLAGS.seed)
main()