Skip to content

習題7: 請自己定義一個神經網路模型,並在 MNIST 資料集上訓練並跑出正確率 #7

@ccckmit

Description

@ccckmit

參考

  1. 深度學習/01-MNIST
  2. https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

卷積層的 JavaScript 實作

https://github.com/karpathy/convnetjs/blob/master/src/convnet_layers_dotproducts.js

  var ConvLayer = function(opt) {
    var opt = opt || {};

    // required
    this.out_depth = opt.filters;
    this.sx = opt.sx; // filter size. Should be odd if possible, it's cleaner.
    this.in_depth = opt.in_depth;
    this.in_sx = opt.in_sx;
    this.in_sy = opt.in_sy;
    
    // optional
    this.sy = typeof opt.sy !== 'undefined' ? opt.sy : this.sx;
    this.stride = typeof opt.stride !== 'undefined' ? opt.stride : 1; // stride at which we apply filters to input volume
    this.pad = typeof opt.pad !== 'undefined' ? opt.pad : 0; // amount of 0 padding to add around borders of input volume
    this.l1_decay_mul = typeof opt.l1_decay_mul !== 'undefined' ? opt.l1_decay_mul : 0.0;
    this.l2_decay_mul = typeof opt.l2_decay_mul !== 'undefined' ? opt.l2_decay_mul : 1.0;

    // computed
    // note we are doing floor, so if the strided convolution of the filter doesnt fit into the input
    // volume exactly, the output volume will be trimmed and not contain the (incomplete) computed
    // final application.
    this.out_sx = Math.floor((this.in_sx + this.pad * 2 - this.sx) / this.stride + 1);
    this.out_sy = Math.floor((this.in_sy + this.pad * 2 - this.sy) / this.stride + 1);
    this.layer_type = 'conv';

    // initializations
    var bias = typeof opt.bias_pref !== 'undefined' ? opt.bias_pref : 0.0;
    this.filters = [];
    // 注意下列這行,決定了卷積層的參數數量
    for(var i=0;i<this.out_depth;i++) { this.filters.push(new Vol(this.sx, this.sy, this.in_depth)); }
    this.biases = new Vol(1, 1, this.out_depth, bias);
  }
  ConvLayer.prototype = {
    forward: function(V, is_training) {
      // optimized code by @mdda that achieves 2x speedup over previous version

      this.in_act = V;
      var A = new Vol(this.out_sx |0, this.out_sy |0, this.out_depth |0, 0.0);
      
      var V_sx = V.sx |0;
      var V_sy = V.sy |0;
      var xy_stride = this.stride |0;

      for(var d=0;d<this.out_depth;d++) {
        var f = this.filters[d];
        var x = -this.pad |0;
        var y = -this.pad |0;
        for(var ay=0; ay<this.out_sy; y+=xy_stride,ay++) {  // xy_stride
          x = -this.pad |0;
          for(var ax=0; ax<this.out_sx; x+=xy_stride,ax++) {  // xy_stride
            // 遮罩累加迴圈開始
            // convolve centered at this particular location
            var a = 0.0;
            for(var fy=0;fy<f.sy;fy++) {
              var oy = y+fy; // coordinates in the original input array coordinates
              for(var fx=0;fx<f.sx;fx++) {
                var ox = x+fx;
                if(oy>=0 && oy<V_sy && ox>=0 && ox<V_sx) {
                  for(var fd=0;fd<f.depth;fd++) {
                    // avoid function call overhead (x2) for efficiency, compromise modularity :(
                    a += f.w[((f.sx * fy)+fx)*f.depth+fd] * V.w[((V_sx * oy)+ox)*V.depth+fd];
                  }
                }
              }
            }
            // 遮罩累加迴圈結束
            a += this.biases.w[d]; // 加上 bias
            A.set(ax, ay, d, a); // 設定進結果格子中
          }
        }
      }
      this.out_act = A;
      return this.out_act;
    },
    backward: function() {

      var V = this.in_act;
      V.dw = global.zeros(V.w.length); // zero out gradient wrt bottom data, we're about to fill it

      var V_sx = V.sx |0;
      var V_sy = V.sy |0;
      var xy_stride = this.stride |0;

      for(var d=0;d<this.out_depth;d++) {
        var f = this.filters[d];
        var x = -this.pad |0;
        var y = -this.pad |0;
        for(var ay=0; ay<this.out_sy; y+=xy_stride,ay++) {  // xy_stride
          x = -this.pad |0;
          for(var ax=0; ax<this.out_sx; x+=xy_stride,ax++) {  // xy_stride

            // convolve centered at this particular location
            var chain_grad = this.out_act.get_grad(ax,ay,d); // gradient from above, from chain rule
            for(var fy=0;fy<f.sy;fy++) {
              var oy = y+fy; // coordinates in the original input array coordinates
              for(var fx=0;fx<f.sx;fx++) {
                var ox = x+fx;
                if(oy>=0 && oy<V_sy && ox>=0 && ox<V_sx) {
                  for(var fd=0;fd<f.depth;fd++) {
                    // avoid function call overhead (x2) for efficiency, compromise modularity :(
                    var ix1 = ((V_sx * oy)+ox)*V.depth+fd;
                    var ix2 = ((f.sx * fy)+fx)*f.depth+fd;
                    f.dw[ix2] += V.w[ix1]*chain_grad;
                    V.dw[ix1] += f.w[ix2]*chain_grad;
                  }
                }
              }
            }
            this.biases.dw[d] += chain_grad;
          }
        }
      }
    },
    getParamsAndGrads: function() {
      var response = [];
      for(var i=0;i<this.out_depth;i++) {
        response.push({params: this.filters[i].w, grads: this.filters[i].dw, l2_decay_mul: this.l2_decay_mul, l1_decay_mul: this.l1_decay_mul});
      }
      response.push({params: this.biases.w, grads: this.biases.dw, l1_decay_mul: 0.0, l2_decay_mul: 0.0});
      return response;
    },
    toJSON: function() {
      var json = {};
      json.sx = this.sx; // filter size in x, y dims
      json.sy = this.sy;
      json.stride = this.stride;
      json.in_depth = this.in_depth;
      json.out_depth = this.out_depth;
      json.out_sx = this.out_sx;
      json.out_sy = this.out_sy;
      json.layer_type = this.layer_type;
      json.l1_decay_mul = this.l1_decay_mul;
      json.l2_decay_mul = this.l2_decay_mul;
      json.pad = this.pad;
      json.filters = [];
      for(var i=0;i<this.filters.length;i++) {
        json.filters.push(this.filters[i].toJSON());
      }
      json.biases = this.biases.toJSON();
      return json;
    },
    fromJSON: function(json) {
      this.out_depth = json.out_depth;
      this.out_sx = json.out_sx;
      this.out_sy = json.out_sy;
      this.layer_type = json.layer_type;
      this.sx = json.sx; // filter size in x, y dims
      this.sy = json.sy;
      this.stride = json.stride;
      this.in_depth = json.in_depth; // depth of input volume
      this.filters = [];
      this.l1_decay_mul = typeof json.l1_decay_mul !== 'undefined' ? json.l1_decay_mul : 1.0;
      this.l2_decay_mul = typeof json.l2_decay_mul !== 'undefined' ? json.l2_decay_mul : 1.0;
      this.pad = typeof json.pad !== 'undefined' ? json.pad : 0;
      for(var i=0;i<json.filters.length;i++) {
        var v = new Vol(0,0,0,0);
        v.fromJSON(json.filters[i]);
        this.filters.push(v);
      }
      this.biases = new Vol(0,0,0,0);
      this.biases.fromJSON(json.biases);
    }
  }

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions