-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_semseg.py
148 lines (117 loc) · 6.07 KB
/
train_semseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import numpy as np
import torch.optim as optim
from torch.cuda import amp
from tqdm import tqdm
import time
from dataset import dataloader_semseg as dataloader
from tools import dir_utils
from configs.load_yaml import load_yaml
from tools.lr_warmup_scheduler import GradualWarmupScheduler
def main(yaml_file,test_mode=False):
######### prepare environment ###########
device = torch.device('cuda')
opt = load_yaml(yaml_file,saveYaml2output=True)
epoch = opt.OPTIM.NUM_EPOCHS
model_dir = opt.SAVE_DIR+'models/'
dir_utils.mkdir_with_del(model_dir)
######### dataset ###########
train_dataset = dataloader.Noise_Dataset(opt.DATASET.TRAIN_CSV, leads=opt.DATASET_CUSTOME.LEADS,
date_len=opt.DATASET_CUSTOME.INPUT_LENGTH,
n_max_cls=opt.DATASET_CUSTOME.OUT_C,
random_crop=True,
transform = dataloader.get_transform(train=True)
)
val_dataset = dataloader.Noise_Dataset(opt.DATASET.VAL_CSV, leads=opt.DATASET_CUSTOME.LEADS,
date_len=opt.DATASET_CUSTOME.INPUT_LENGTH,
n_max_cls=opt.DATASET_CUSTOME.OUT_C,
random_crop=False,
transform = dataloader.get_transform(train=False)
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.OPTIM.BATCH_SIZE,
shuffle=True, num_workers=4,
prefetch_factor=3,
persistent_workers=False, #maintain woker alive even consumed
)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=opt.OPTIM.BATCH_SIZE,
shuffle=False, num_workers=4,
prefetch_factor=3,
persistent_workers=False, #maintain woker alive even consumed
# drop_last=True,
)
dataset_sizes = {'train':len(train_dataset),
'val':len(val_dataset)}
print('===> Loading datasets done')
######### model ###########
from models.model import Model
model = Model(in_c=1,
out_c=opt.DATASET_CUSTOME.OUT_C, \
img_size=opt.DATASET_CUSTOME.INPUT_LENGTH, \
embed_dim=opt.MODEL.EMBED_DIM, \
patch_size=opt.MODEL.PATCH_SIZE, \
window_size=opt.MODEL.WINDOW_SIZE, \
depths=opt.MODEL.DEPTHS, \
num_heads=opt.MODEL.N_HEADS, \
# denoise_mode=opt.MODEL.Denoise_Mode, \
).to(device)
######### optim ########### d
new_lr = opt.OPTIM.LR_INITIAL
optimizer = optim.Adam(model.parameters(), lr=new_lr, betas=(0.9, 0.999),eps=1e-8)
warmup_epochs = 3
scheduler_cosine = optim.lr_scheduler.CosineAnnealingLR(optimizer, opt.OPTIM.NUM_EPOCHS-warmup_epochs, eta_min=opt.OPTIM.LR_MIN)
scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=warmup_epochs, after_scheduler=scheduler_cosine)
scheduler.step()
criterion = torch.nn.CrossEntropyLoss(weight=torch.FloatTensor([1,1,1]).to(device))
grad_scaler = amp.GradScaler()
start_epoch = 0
for epoch in range(start_epoch, opt.OPTIM.NUM_EPOCHS + 1):
# for epoch in range(start_epoch, 2 + 1):
epoch_start_time = time.time()
epoch_train_loss = 0
#### train ####
model.train()
for i, data in enumerate(tqdm(train_dataloader), 0):
# for i, data in enumerate(train_dataloader):
inputs = data['input'].to(device)
labels = data['label'].to(device)
optimizer.zero_grad()
# with torch.set_grad_enabled(True):
torch.set_grad_enabled(True)
with amp.autocast():
outputs = model(inputs)
loss = criterion(outputs, labels)
outputs = np.argmax(outputs.cpu().detach().numpy(), axis=1)
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
epoch_train_loss += loss.item() * inputs.size(0)
train_loss_mean = epoch_train_loss / dataset_sizes['train']
#### Evaluation ####
model.eval()
epoch_val_loss = 0
for data in val_dataloader:
inputs = data['input'].to(device)
labels = data['label'].to(device)
torch.set_grad_enabled(False)
outputs = model(inputs)
loss = criterion(outputs, labels)
outputs = np.argmax(outputs.cpu().detach().numpy(), axis=1)
epoch_val_loss += loss.item()* inputs.size(0)
val_loss_mean = epoch_val_loss / dataset_sizes['val']
scheduler.step()
save_path = model_dir+'model_epoch_{}_val_{:.6f}.pth'.format(epoch,val_loss_mean)
torch.save(model, save_path)
print(save_path)
# assert 1>2
print("------------------------------------------------------------------")
print("Epoch: {}\tTime: {:.4f}s \t train Loss: {:.6f} val loss: {:.6f}".format(
epoch, time.time()-epoch_start_time, train_loss_mean, val_loss_mean))
print("------------------------------------------------------------------")
if __name__ == "__main__":
from argparse import ArgumentParser
parser = ArgumentParser(description="train")
parser.add_argument("-c", "--config", type=str,
default=None,
help="path to yaml file")
args = parser.parse_args()
main(args.config,test_mode=False)