forked from llorracc/ctDiscrete
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctDiscreteAppendix.tex
executable file
·194 lines (179 loc) · 12 KB
/
ctDiscreteAppendix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
\centerline{\bf \LARGE Appendix}
\renewcommand{\thesection}{A.\arabic{section}}
\setcounter{section}{0}
\section{Taylor Approximation for Consumption Growth}\label{sec:cGroTaylor}
\PTremark{Minor edits in the appendix, mostly presentation. }
Applying a second-order Taylor approximation to \eqref{eq:cedel}, simplifying, and rearranging yields:
\begin{eqnarray*}
\left\{1+\urate\left[\left(\frac{\cRatE_{t+1}}{\cU_{t+1}}\right)^{\CRRA}-1\right]\right\}^{1/\CRRA} & = & \left\{1+\urate\left[\left(\frac{\cU_{t+1}+\cRatE_{t+1}-\cU_{t+1}}{\cU_{t+1}}\right)^{\CRRA}-1\right]\right\}^{1/\CRRA}
\\ & = & \left\{1+\urate\left[\left(1+\nabla _{t+1}\right)^{\CRRA}-1\right]\right\}^{1/\CRRA}
\\ & \approx & \left\{1+\urate\left[1+\CRRA \nabla _{t+1}+ \CRRA (\nabla _{t+1})^{2}\prudEx-1\right]\right\}^{1/\CRRA}
\\ & = & \left\{1+ \CRRA \urate (\nabla _{t+1}+ (\nabla _{t+1})^{2}\prudEx)\right\}^{1/\CRRA}
\\ & \approx & 1+ \urate \left(1+\nabla _{t+1}\prudEx\right)\nabla _{t+1}. \label{eq:cTaylorRaw}
\end{eqnarray*}
\section{The Exact Formula for $\mTarg^{\null}$}
The steady-state value of $\mRatE$, denoted $\mTarg^{\null}$, is the solution of \eqref{eq:DceEq0}-\eqref{eq:xDelEqZero}, which may be computed in closed form. To simplify some of the intermediate steps in the algebra, define the short-hand notation:
$\zeta \equiv \Rnorm \MPCU \straight$ and
$\Rnorm \equiv \Rfree\PGro^{-1}$ and
$\straight\equiv\left(\frac{\PatPGro^{-\CRRA}-\erate}{\urate}\right)^{1/\CRRA}$. From this: $\Rfree \MPCU \straight = \zeta \PGro$.
A series of straightforward manipulations yields:
\begin{eqnarray}
\left(\frac{\zeta}{1+\zeta}\right)\mTarg^{\null} & = & (1-\Rnorm^{-1})\mTarg^{\null}+\Rnorm^{-1} \notag
\\ \left(\Rnorm\frac{\zeta}{1+\zeta}\right)\mTarg^{\null} & = & (\Rnorm-1)\mTarg^{\null}+1 \notag
\\ \left(\Rnorm\left\{\frac{\zeta}{1+\zeta}-1\right\}+1\right)\mTarg^{\null} & = & 1 \notag
\\ \left(\Rnorm\left\{\frac{\zeta-(1+\zeta)}{1+\zeta}\right\}+\frac{1+\zeta}{1+\zeta}\right)\mTarg^{\null} & = & 1 \notag
\\ \left(\frac{1+\zeta-\Rnorm}{1+\zeta}\right)\mTarg^{\null} & = & 1 \notag
\\ \mTarg^{\null} & = & \left(\frac{1+\zeta}{1+\zeta-\Rnorm}\right) \notag
\\ \mTarg^{\null} & = & \left(\frac{1+\zeta+\Rnorm-\Rnorm}{1+\zeta-\Rnorm}\right) \notag
\\ \mTarg^{\null} & = & 1 + \left(\frac{\Rnorm}{1+\zeta-\Rnorm}\right) \notag
\\ \mTarg^{\null} & = & 1 + \left(\frac{\Rfree}{\PGro+\zeta\PGro-\Rfree}\right) \label{eq:mTarget}
.
\end{eqnarray}
A first point about this formula is that:
\begin{eqnarray}
\zeta\PGro & = & \Rfree \MPCU \left(1+\frac{(\Pat/\PGro)^{-\CRRA} - 1}{\urate}\right)^{1/\CRRA}
\label{eq:zetaPGro}
\end{eqnarray}
is likely to increase as $\urate$ vanishes to zero.\footnote{The effect is
not necessarily monotonic because $\urate$ affects $\Pat/\PGro$
as well as the denominator of \eqref{eq:mTarget}; however, for
plausible calibrations the effect of the denominator predominates.}
Note that \eqref{eq:zetaPGro} tends to infinity as $\urate \rightarrow 0$, which implies that $\lim_{\urate \rightarrow 0} \mTarg^{\null} = 1$.
This is precisely what would be expected since an impatient consumer is self-constrained to keep
$\mRatE > 1$.
Thus, as the risk gets infinitesimally small, the
amount by which the target $\mRatE$ exceeds its minimum possible value shrinks to zero.
We now show that the RIC and GIC ensure that the denominator of the fraction in \eqref{eq:mTarget} is positive:
\begin{eqnarray*}
\PGro + \zeta \PGro - \Rfree & = & \PGro + \Rfree \MPCU \straight - \Rfree
\\& = & \PGro + \Rfree \left(1- \frac{(\Rfree \Discount)^{1/\rho}}{\Rfree}\right) \left(\frac{(\frac{(\Rfree\Discount)^{1/\CRRA}}{\PGro})^{-\CRRA}-1}{\urate}+1\right)^{1/\CRRA}-\Rfree
\\& > & \PGro+\Rfree \left(1-\frac{(\Rfree\Discount)^{1/\rho}}{\Rfree}\right)
\left(\frac{(\frac{(\Rfree\Discount)^{1/\CRRA}}{\PGro})^{-\CRRA}-1}{1}+1\right)^{1/\CRRA}-\Rfree
\\& = & \PGro+\Rfree\left(1-\frac{(\Rfree\Discount)^{1/\rho}}{\Rfree}\right)\frac{\PGro}{(\Rfree\Discount)^{1/\CRRA}}-\Rfree
\\& = & \PGro+\Rfree \frac{\PGro}{(\Rfree\Discount)^{1/\CRRA}}- \PGro - \Rfree
\\& = & \Rfree \left(\frac{\PGro}{(\Rfree\Discount)^{1/\CRRA}}-1\right)
\\& > & 0.
\end{eqnarray*}
\section{An Approximation for $\mTarg^{\null}$}
We can obtain further insight into \eqref{eq:mTarget} by using a judicious mix of first- and second-order Taylor expansions. Define the short-hand $\aleph$:
\begin{eqnarray*}
%\aleph & = & \left(\frac{(\Pat/\PGro)^{-\CRRA} - 1}{\urate}\right)
\aleph & = & \frac{(\Pat/\PGro)^{-\CRRA} - 1}{\urate}%removed brackets
.
\end{eqnarray*}
First, substituting $\MPCU = -\patr$ into \eqref{eq:mTarget}, and computing a second-order Taylor expansion:
\begin{eqnarray}
\label{eq:zetaExp}
\zeta\PGro & = & \Rfree \MPCU \left(1+\aleph\right)^{1/\CRRA} \notag
\\ & \approx & -\Rfree \patr \left(1+\CRRA^{-1}\aleph+(\CRRA^{-1})(\CRRA^{-1}-1)(\aleph^{2}/2)\right) \notag
\\ & = & -\Rfree \patr \left(1+\CRRA^{-1}\aleph\left\{1+\left(\frac{1-\CRRA}{\CRRA}\right)(\aleph/2)\right\}\right)
. \label{eq:zetaTaylor2}
\end{eqnarray}
Secondly, applying a first-order Taylor expansion to $\aleph$:
\begin{eqnarray}
\label{eq:hatpi}
\aleph = \frac{(1+\patpGro)^{-\CRRA}-1}{\urate}
\approx \frac{1- \CRRA \patpGro-1}{\urate}
= -\frac{\CRRA \patpGro}{\urate}
.
\end{eqnarray}
Thirdly, substitute \eqref{eq:hatpi} into \eqref{eq:zetaTaylor2}:
\PTremark{removed a line in the equation below (a reminder of signs of different components is not necessary here, is it?):}
\begin{eqnarray}
\zeta\PGro
& \approx &
-\Rfree \patr \left(1-(\patpGro/\urate)(1+(1-\CRRA)(-\patpGro/\urate)/2)\right)\\
%& \approx &
%\underbrace{-\Rfree \patr}_{>0} \notag \left\{1 / \underbrace{-(\patpGro/\urate)}_{>0}\left(1+\underbrace{(1-\CRRA)}_{<0}\underbrace{(-\patpGro/\urate)}_{>0}/2\right)\right\}
\label{eq:zetaGammaApprox}
.
\end{eqnarray}
By our definition of $\prudEx$ (the excess of prudence over the logarithmic benchmark):
\begin{eqnarray}
% \prudEx & \equiv & \left(\frac{\CRRA-1}{2}\right)
\prudEx & \equiv & \frac{\CRRA-1}{2}%removed brackets
. \notag
\end{eqnarray}
Equation~\eqref{eq:mTarget} can then be approximated by:
\begin{eqnarray}
\mTarg^{\null} & \approx & 1 + \left(\frac{1}{\PGro/\Rfree-\patr \left(1-(\patpGro/\urate)(1-(-\patpGro/\urate)\prudEx) \right)-1}\right) \notag
\\ & \approx & 1 + \left(\frac{1}{(\pGro-\rfree)+(-\patr) \left(1+(-\patpGro/\urate)(1-(-\patpGro/\urate)\prudEx)\right)}\right)
\label{eq:mTargetApprox}
\end{eqnarray}
where negative signs have been preserved in front of the $\patr$ and $\patpGro$ terms as a reminder that
the GIC and the RIC imply these terms are themselves negative (so that $-\patr$ and $-\patpGro$ are positive).
An increase in relative risk aversion $\CRRA$, \textit{ceteris paribus}, raises $\prudEx$ and thereby lowers the denominator of \eqref{eq:mTargetApprox}. This reasoning suggests that
greater risk aversion results in a larger target level of wealth.\footnote{``Suggests'' rather than proves, because
this derivation uses approximations; plausible numerical calibrations are in agreement with the suggestion.}
The formula also provides insight about how the human wealth effect
works in equilibrium. All else equal, the human wealth effect is captured
by the $(\pGro-\rfree)$ term in the denominator of \eqref{eq:mTargetApprox}:
it is obvious that a larger value of $\pGro$ results in a smaller
target value for $m$. However, the size of the human wealth
effect also depends on the magnitude of the patience and prudence contributions to the denominator, and those terms could dominate the human wealth effect.
%This reduction in the human wealth effect is interesting because practitioners have known at least since \cite{summersCapTax} that the human wealth effect is implausibly large in the perfect foresight model.
For \eqref{eq:mTargetApprox} to make sense, we need
the denominator of the fraction to be positive. Let:
\begin{eqnarray}
\patpGrohat & \equiv & \patpGro(1-(-\patpGro/\urate)\prudEx)
.
\end{eqnarray}
The denominator of \eqref{eq:mTargetApprox} is positive if:
\begin{eqnarray}
(\pGro - \rfree) & > & \patr - \patr\patpGrohat/\urate \notag
%\\ & = &
\left(\CRRA^{-1}(\rfree-\timeRate)-\rfree\right)- \patr\patpGrohat/\urate \notag
\\ \Rightarrow \pGro & > & \CRRA^{-1}(\rfree-\timeRate)- \patr\patpGrohat/\urate \notag
%\\ 0 & > & \underbrace{\CRRA^{-1}(\rfree-\timeRate) - \pGro}_{<0} - \patr\patpGrohat/\urate \notag
%\\ \Rightarrow 0 & > & \underbrace{\CRRA^{-1}(\rfree-\timeRate) - \pGro}_{\patpGro} - \patr(\patpGrohat/\urate) \notag
\\ \Rightarrow 0 & > & \CRRA^{-1}(\rfree-\timeRate) - \pGro - \patr(\patpGrohat/\urate) \notag
\\ \Rightarrow 0 & > & \patpGro - \patr(\patpGrohat/\urate) \label{eq:newDenom}
.
\end{eqnarray}
From the RIC, we have $\patr<0$; from the GIC, we have $\patpGro<0$; the latter in turn gives $\patpGrohat < 0$; and thus condition \eqref{eq:newDenom} holds.
\PTremark{I shortened the footnote, might it be removed altogether? I couldn't follow it very well, I wasn't sure what ``the above'' was referring to.}
\footnote{We implicitly assume that, in the second-order Taylor approximation in \eqref{eq:zetaTaylor2}, the absolute value of the second-order term is negligeable relative to the first-order term, i.e. $|\CRRA^{-1} \aleph | \geq |(\CRRA^{-1})(\CRRA^{-1}-1)(\aleph^{2}/2)|$.}
%\footnote{In more detail: For the second-order Taylor approximation in \eqref{eq:zetaTaylor2}, we implicitly assume that the absolute value of the second-order term is negligeable relative to the first-order term, i.e. $|\CRRA^{-1} \aleph | \geq |(\CRRA^{-1})(\CRRA^{-1}-1)(\aleph^{2}/2)|$. Substituting \eqref{eq:hatpi}, the above could be simplified to $1 \geq (-\patpGro/\urate)\prudEx$, therefore we have $\patpGrohat < 0$. This simple justification is based on the proof above that RIC and GIC guarantee the denominator of the fraction in \eqref{eq:mTarget} is positive.}
The same set of derivations imply that we can
replace the denominator in \eqref{eq:mTargetApprox} with the negative
of the RHS of \eqref{eq:newDenom}, yielding a more compact expression
for the target level of resources:
\begin{eqnarray}
\mTarg^{\null} & \approx & 1 + \left(\frac{1}{\patr(\patpGrohat/\urate) - \patpGro }\right) \notag
\\ & = & 1 + \left(\frac{1/(-\patpGro)}{1+(-\patr/\urate)(1+(-\patpGro/\urate)\prudEx) }\right) \label{eq:mTargetCompact}
.
\end{eqnarray}
This formula makes plain that an
increase in either form of impatience raises the denominator of the
fraction in
\eqref{eq:mTargetCompact} and thus reduces the target level of assets.
Two specializations of the formula are particularly useful. The first useful special case is $\CRRA = 1$ (logarithmic utility). In this case,
\begin{eqnarray*}
\prudEx & = & 0
\\ \patr & = & -\timeRate
\\ \patpGro & = & \rfree-\timeRate-\pGro
%\\ \patpGrohat & = & -\pGro
\end{eqnarray*}
and the approximation reduces to:
\begin{eqnarray}
\mTarg^{\null} & \approx & 1 + \left(\frac{1}{(\pGro-\rfree)+\timeRate(1+(\pGro+\timeRate-\rfree)/\urate)}\right)
\label{eq:mTargetCompactLogUtility}
\end{eqnarray}
Equation \eqref{eq:mTargetCompactLogUtility} neatly captures the effect of an increase in human wealth (an increase in $\pGro$ or a decrease in $\rfree$), the effect of an increase in impatience $\timeRate$,
the effect of a decrease in unemployment risk $\urate$: these reduce target wealth.
The second useful special case is $\rfree = \timeRate$ (but $\CRRA>1$). In this case,
\begin{eqnarray*}
\patr & = & -\timeRate
\\ \patpGro & = & -\pGro
\\ \patpGrohat & = & -\pGro (1-(\pGro/\urate)\prudEx)
\end{eqnarray*}
and the approximation becomes:
\begin{eqnarray}
\mTarg^{\null} & \approx & 1 + \left(\frac{1}{(\pGro-\rfree)+\timeRate(1+(\pGro/\urate)(1-(\pGro/\urate)\prudEx))}\right)
\label{eq:mTargetCompactNeutralPatience}
\end{eqnarray}
Equation~\eqref{eq:mTargetCompactNeutralPatience} shows that an increase in the prudence term $\prudEx$
shrinks the denominator and thereby boosts the target level of
wealth.\footnote{It would be inappropriate to use the equation to
consider the effect of an increase in $\rfree$ because the equation was derived under the
assumption $\timeRate=\rfree$, so $\rfree$ is not free to vary.}