-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
104 lines (88 loc) · 3.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""
Usage:
Training:
python train.py --config-name=example
"""
import logging
import os
import pathlib
import hydra
import torch
import wandb
from eval import eval_main
from omegaconf import DictConfig, OmegaConf
log = logging.getLogger(__name__)
OmegaConf.register_new_resolver("eval", eval, replace=True)
@hydra.main(
version_base=None,
config_path=str(pathlib.Path(__file__).parent.joinpath('imitation','config')),
config_name="train"
)
def train(cfg: DictConfig) -> None:
print(OmegaConf.to_yaml(cfg))
log.info("Training policy...")
# instanciate policy from cfg file
policy = hydra.utils.instantiate(cfg.policy)
log.info(f"Training policy {policy.__class__.__name__} with seed {cfg.seed} on task {cfg.task.task_name}")
try:
if cfg.policy.ckpt_path is not None and cfg.load_ckpt:
policy.load_nets(cfg.policy.ckpt_path)
except Exception as e:
log.error(f"Error loading checkpoint: {e}")
wandb.init(
project=policy.__class__.__name__,
group=cfg.task.task_name,
name=f"v1.2.2",
# track hyperparameters and run metadata
config={
"policy": cfg.policy,
"dataset_type": cfg.task.dataset_type,
"n_epochs": cfg.num_epochs,
"seed": cfg.seed,
"lr": cfg.policy.lr,
"task": cfg.task.task_name,
},
# mode="disabled",
)
# wandb.watch(policy.model, log="all")
torch.manual_seed(cfg.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(cfg.seed)
# Split the dataset into train and validation
train_dataset, val_dataset = torch.utils.data.random_split(
policy.dataset, [len(policy.dataset) - int(cfg.val_fraction * len(policy.dataset)), int(cfg.val_fraction * len(policy.dataset))]
)
E = cfg.num_epochs
V = cfg.num_epochs
if cfg.eval_params != "disabled":
E = cfg.eval_params.eval_every
V = cfg.eval_params.val_every
assert V <= E, "Validation interval should be smaller than evaluation interval"
assert E % V == 0, "Evaluation interval should be multiple of validation interval"
try:
policy.num_epochs = cfg.num_epochs
except:
log.error("Error setting total num_epochs in policy")
# evaluate every E epochs
max_success_rate = 0
for i in range(1, 1 + cfg.num_epochs // V):
# train policy
policy.train(dataset=train_dataset,
num_epochs=V,
model_path=cfg.policy.ckpt_path,
seed=cfg.seed)
log.info(f"Calculating validation loss...")
val_loss = policy.validate(
dataset=val_dataset,
model_path=cfg.policy.ckpt_path,
)
wandb.log({"validation_loss": val_loss})
# evaluate policy
if i % (E/V) == 0:
success_rate = eval_main(cfg.eval_params)
if success_rate >= max_success_rate:
max_success_rate = success_rate
policy.save_nets(cfg.policy.ckpt_path + f"_best_succ={success_rate}.pt")
wandb.finish()
if __name__ == "__main__":
train()