-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutil.py
530 lines (438 loc) · 21.1 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import ankura
import matplotlib.pyplot as plt
plt.style.use('seaborn')
from sklearn.linear_model import LogisticRegression
import scipy
import numpy as np
import time
import pickle
import os
import socket
Z = 'z'
THETA = 'theta'
prior_attr_name = 'lambda'
# corpus_data was pickled as this tuple:
# (Q, labels, train_dev_ids, train_dev_corpus,
# train_ids, train_corpus, dev_corpus, dev_ids,
# test_ids, test_corpus, gs_anchor_vectors,
# gs_anchor_indices, gs_anchor_tokens)
def get_logistic_regression_accuracy_word_topic_pairs(unpickled_corpus_data, anchors, attribute_name='binary_rating'):
Q = unpickled_corpus_data[0]
train_ids = unpickled_corpus_data[2] # train_dev ids and corpus from tbuie
train_corpus = unpickled_corpus_data[3]
test_ids = unpickled_corpus_data[8] # This is the test data, not the dev data used in tbuie.
test_corpus = unpickled_corpus_data[9]
num_topics = len(anchors)
train_target = [doc.metadata[attribute_name] for doc in train_corpus.documents]
test_target = [doc.metadata[attribute_name] for doc in test_corpus.documents]
topics = ankura.anchor.recover_topics(Q, anchors, 1e-5)
ankura.topic.sampling_assign(train_corpus, topics, z_attr=Z)
ankura.topic.sampling_assign(test_corpus, topics, z_attr=Z)
train_matrix = scipy.sparse.lil_matrix((len(train_corpus.documents), num_topics * len(train_corpus.vocabulary)))
test_matrix = scipy.sparse.lil_matrix((len(test_corpus.documents), num_topics * len(test_corpus.vocabulary)))
for i, doc in enumerate(train_corpus.documents):
for j, t in enumerate(doc.tokens):
train_matrix[i, t[0] * num_topics + doc.metadata[Z][j]] += 1
for i, doc in enumerate(test_corpus.documents):
for j, t in enumerate(doc.tokens):
test_matrix[i, t[0] * num_topics + doc.metadata[Z][j]] += 1
lr = LogisticRegression()
lr.fit(train_matrix, train_target)
return lr.score(test_matrix, test_target)
def get_logistic_regression_accuracy(Q, train_corpus, test_corpus, anchor_vectors, attribute_name='binary_rating'):
num_topics = len(anchor_vectors)
train_target = [doc.metadata[attribute_name] for doc in train_corpus.documents]
test_target = [doc.metadata[attribute_name] for doc in test_corpus.documents]
topics = ankura.anchor.recover_topics(Q, anchor_vectors, 1e-5)
ankura.topic.gensim_assign(train_corpus, topics, theta_attr=THETA)
ankura.topic.gensim_assign(test_corpus, topics, theta_attr=THETA)
train_matrix = np.zeros((len(train_corpus.documents), num_topics))
test_matrix = np.zeros((len(test_corpus.documents), num_topics))
for d, doc in enumerate(train_corpus.documents):
train_matrix[d] = doc.metadata[THETA]
for d, doc in enumerate(test_corpus.documents):
test_matrix[d] = doc.metadata[THETA]
lr = LogisticRegression()
lr.fit(train_matrix, train_target)
return lr.score(test_matrix, test_target)
# corpus_data was pickled as this tuple:
# (Q, labels, train_dev_ids, train_dev_corpus,
# train_ids, train_corpus, dev_corpus, dev_ids,
# test_ids, test_corpus, gs_anchor_vectors,
# gs_anchor_indices, gs_anchor_tokens)
def get_fc_test_metrics(Q, labels, train_corpus, test_corpus,
anchor_vectors, attr_name='binary_rating'):
start = time.time()
C, topics = ankura.anchor.recover_topics(Q, anchor_vectors, epsilon=1e-5, get_c=True)
classifier = ankura.topic.free_classifier_dream(train_corpus, attr_name,
labeled_docs=set(range(len(train_corpus.documents))), topics=topics,
C=C, labels=labels,
prior_attr_name=prior_attr_name)
contingency = ankura.validate.Contingency()
for doc in test_corpus.documents:
gold = doc.metadata[attr_name]
pred = classifier(doc)
contingency[gold, pred] += 1
#There was a divide by 0 error here for recall, so I just made an accuracy one
return contingency.accuracy(), contingency.recall(), contingency.precision()
mytot = 0
mycount = 0
def get_fc_test_acc(Q, labels, train_corpus, test_corpus,
anchor_vectors, attr_name='binary_rating'):
C, topics = ankura.anchor.recover_topics(Q, anchor_vectors, epsilon=1e-5, get_c=True)
classifier = ankura.topic.free_classifier_dream(train_corpus, attr_name,
labeled_docs=set(range(len(train_corpus.documents))), topics=topics,
C=C, labels=labels,
prior_attr_name=prior_attr_name)
start=time.time()
contingency = ankura.validate.Contingency()
for doc in test_corpus.documents:
gold = doc.metadata[attr_name]
pred = classifier(doc)
contingency[gold, pred] += 1
global mytot
global mycount
mytot += time.time()-start
mycount += 1
print('\tAVERAGE Classify Time:', mytot/mycount)
print(f'\tThis classify: {time.time()-start}')
return contingency.accuracy()
def user_data_to_dicts(user_data_raw, dataset, file_path=None):
user_data_dicts = [{'dataset': dataset, 'file': file_path, 'update_num': i,
'max': False, 'min': False, 'first': False,
'anchor_tokens': data[0], 'anchor_vectors': data[1], 'fc_dev_acc': data[2]}
for i, data in enumerate(user_data_raw)]
return user_data_dicts
# corpus_data was pickled as this tuple:
# (Q, labels, train_dev_ids, train_dev_corpus,
# train_ids, train_corpus, dev_corpus, dev_ids,
# test_ids, test_corpus, gs_anchor_vectors,
# gs_anchor_indices, gs_anchor_tokens)
# def get_logistic_regression_accuracy(unpickled_corpus_data, anchors, attribute_name='binary_rating'):
def process_all_user_data(corpus_data_path, user_data_directory_path,
dataset_name, n_used=10, attr_name='binary_rating'):
print('Getting corpus data...')
corpus_data = pickle.load(open(corpus_data_path, 'rb'))
(Q, labels, train_dev_ids, train_dev_corpus,
train_ids, train_corpus, dev_corpus, dev_ids,
test_ids, test_corpus, gs_anchor_vectors,
gs_anchor_indices, gs_anchor_tokens) = corpus_data
all_users_data = []
print('Starting user_data stuff...')
for user_num, user_data_file in enumerate(os.listdir(user_data_directory_path)):
print(f'File {user_num+1}')
file_path = os.path.join(user_data_directory_path, user_data_file)
user_data_raw = pickle.load(open(file_path, 'rb'))
n_updates = len(user_data_raw)
random_inds = np.random.choice(n_updates, size=min(n_updates, n_used), replace=False)
user_data_raw = [user_data_raw[i] for i in random_inds]
user_data = user_data_to_dicts(user_data_raw, dataset_name, user_data_file)
for i, data in enumerate(user_data):
print(f' update: {i+1}/{len(user_data)}')
start = time.time()
# lr_acc = get_logistic_regression_accuracy(Q, train_dev_corpus, test_corpus,
# data['anchor_vectors'], attr_name)
# end = time.time() - start
# data['lr_time'] = end
# data['lr_acc'] = lr_acc
start = time.time()
fc_acc = get_fc_test_acc(Q, labels, train_dev_corpus,
test_corpus, data['anchor_vectors'],
attr_name)
end = time.time() - start
data['fc_acc'] = fc_acc
data['fc_time'] = end
print(end)
all_users_data += user_data
return all_users_data
def run_them_all(base_path='UserData', final_anchors_path='UserDataFinalAnchors', n_used=30):
data_dict = dict()
dataset_names = ['yelp', 'amazon', 'tripadvisor']
dataset_attrs = ['binary_rating', 'binary_rating', 'label']
dataset_names = ['amazon']
dataset_attrs = ['binary_rating']
for dataset_name, attr_name in zip(dataset_names, dataset_attrs):
corpus_pickle_path = os.path.join(base_path, dataset_name + '.pickle')
user_data_path = os.path.join(base_path, final_anchors_path, dataset_name)
print('Beginning to use',corpus_pickle_path)
print(' with data in', user_data_path)
data = process_all_user_data(corpus_pickle_path, user_data_path,
dataset_name, n_used=n_used, attr_name=attr_name)
data_dict[dataset_name]=data
try:
pass
#with open('data_dict.pickle', 'wb') as outfile:
# pickle.dump(data_dict, outfile)
finally:
return data_dict
def get_maxes_mins_and_start(data_dict):
base_path = 'UserData'
final_anchors_path = 'UserDataFinalAnchors'
dataset_names = ['yelp', 'amazon', 'tripadvisor']
dataset_attrs = ['binary_rating', 'binary_rating', 'label']
#data_files_used = set(data['file'] for dataset_name in dataset_names
# for data in data_dict[dataset_name])
for dataset_name, attr_name in zip(dataset_names, dataset_attrs):
corpus_pickle_path = os.path.join(base_path, dataset_name + '.pickle')
user_data_path = os.path.join(base_path, final_anchors_path, dataset_name)
print('Beginning to use',corpus_pickle_path)
print(' with data in', user_data_path)
print('Getting corpus data...')
corpus_data = pickle.load(open(corpus_pickle_path, 'rb'))
(Q, labels, train_dev_ids, train_dev_corpus,
train_ids, train_corpus, dev_corpus, dev_ids,
test_ids, test_corpus, gs_anchor_vectors,
gs_anchor_indices, gs_anchor_tokens) = corpus_data
print('Starting user_data stuff...')
get_first=True
for user_num, user_data_file in enumerate(os.listdir(user_data_path)):
print(f'File {user_num+1}')
file_path = os.path.join(user_data_path, user_data_file)
user_data_raw = pickle.load(open(file_path, 'rb'))
print(len(user_data_raw))
n_updates = len(user_data_raw)
max_ind = max(range(n_updates), key=lambda num: user_data_raw[num][2])
min_ind = min(range(n_updates), key=lambda num: user_data_raw[num][2])
inds_to_get = [0, min_ind, max_ind] if get_first else [min_ind, max_ind]
key_labels = ['first','min','max'] if get_first else ['min','max']
user_data_raw = [user_data_raw[i] for i in inds_to_get]
user_data = user_data_to_dicts(user_data_raw, dataset_name, user_data_file)
for i, (data, key_label) in enumerate(zip(user_data, key_labels)):
print(f' update: {i+1}/{len(user_data)}')
start = time.time()
lr_acc = 0 #get_logistic_regression_accuracy(Q, train_dev_corpus, test_corpus,
# data['anchor_vectors'], attr_name)
end = 0 #time.time() - start
data['lr_time'] = end
data['lr_acc'] = lr_acc
start = time.time()
fc_acc = get_fc_test_acc(Q, labels, train_dev_corpus,
test_corpus, data['anchor_vectors'],
attr_name)
end = time.time() - start
data['fc_acc'] = fc_acc
data['fc_time'] = end
data_dict[dataset_name].append(data)
if key_label == 'first':
get_first = False
data[key_label] = True
drop_dups(data_dict)
try:
with open('data_dict_with_maxes.pickle', 'wb') as outfile:
pickle.dump(data_dict, outfile)
finally:
return data_dict
def drop_dups(data_dict):
print('dropping duplicates')
for dataset_name in ['yelp', 'amazon', 'tripadvisor']:
dataset_data = data_dict[dataset_name]
accs = set()
to_remove = []
for data in dataset_data:
if not data.get('max'):
data['max'] = False
if not data.get('first'):
data['first'] = False
if not data.get('min'):
data['min'] = False
dataset_data.sort(key=lambda d: d.get('max'), reverse=True)
for d, data in enumerate(dataset_data):
if (data['fc_dev_acc'], data['fc_acc']) in accs:
if data.get('max') or data.get('first') or data.get('min'):
continue
to_remove.append(d)
else:
accs.add((data['fc_dev_acc'], data['fc_acc']))
to_remove.sort(reverse=True)
print(f'dropping {len(to_remove)} from {dataset_name}')
for ind in to_remove:
dataset_data.pop(ind)
def plot_user_data(user_data, x_label, y_label, ax=None,
xlim=None, ylim=None, xtext=None, ytext=None):
if ax is None:
fig, ax = plot.subplots()
x = [data[x_label] for data in user_data if not (data.get('max'))]# or data.get('min'))]
y = [data[y_label] for data in user_data if not (data.get('max'))]# or data.get('min'))]
max_x = [data[x_label] for data in user_data if data.get('max')]
max_y = [data[y_label] for data in user_data if data.get('max')]
start_x = [data[x_label] for data in user_data if data['first']]
start_y = [data[y_label] for data in user_data if data['first']]
min_x = [data[x_label] for data in user_data if data.get('min')]
min_y = [data[y_label] for data in user_data if data.get('min')]
ax.scatter(x, y, s=30, alpha=.40)
print('dev first', start_x, 'test_first', start_y)
#ax.scatter(min_x, min_y, marker='o', s=30, alpha=.90)
#ax.scatter(max_x, max_y, marker='+', s=120, alpha=.90)
#ax.scatter(start_x, start_y, marker='*', s=500, alpha=1.00,
#ax.scatter(min_x, min_y, c='deep', marker='o', s=30, alpha=.90)
ax.scatter(max_x, max_y, color='red', marker='+', s=1000, alpha=1.00,
edgecolors='black')
ax.scatter(start_x, start_y, color='k', marker='*', s=1000, alpha=1.00,
edgecolors='black')
all_data_x = np.array([data[x_label] for data in user_data])
all_data_y = np.array([data[y_label] for data in user_data])
fit = np.polyfit(all_data_x, all_data_y, deg=1)
#ax.plot(all_data_x, fit[0]*all_data_x + fit[1], color='purple')
print(np.corrcoef(all_data_x, all_data_y))
#print(np.corrcoef(max_x, max_y))
if xtext is None:
xtext = x_label
if ytext is None:
ytext = y_label
ax.set_xlabel(xtext, fontsize=40)
ax.set_ylabel(ytext, fontsize=40)
if xlim:
ax.set_xlim(*xlim)
if ylim:
ax.set_ylim(*ylim)
return ax
def get_average_improvement(dataset_name, user_data):
dataset_data = user_data[dataset_name]
maxes = [data for data in dataset_data if data.get('max')]
maxes = sorted(maxes, key=lambda d: d['fc_dev_acc'], reverse=True)[:10]
n = len(maxes)
start = [data for data in dataset_data if data.get('first')][0]
average_fc_dev = sum(data['fc_dev_acc'] for data in maxes)/n
average_test_fc = sum(data['fc_acc'] for data in maxes)/n
fc_dev_improvement = average_fc_dev - start['fc_dev_acc']
fc_test_improvement = average_test_fc - start['fc_acc']
print('Average dev improvement', fc_dev_improvement)
print('Average test improvement', fc_test_improvement)
def get_processed_data():
"""Gets the input for the paper to be used in the plot_all_users_data
function"""
folder = 'data/emnlp2018_userstudy/'
data = []
for filename in os.listdir(folder):
if filename.startswith('processed'):
with open(os.path.join(folder,filename), 'rb') as infile:
data += pickle.load(infile)
return {'amazon':data}
def get_emnlp_user_study():
with open('data/data_for_EMNLP_user_study.pickle', 'rb') as infile:
data = pickle.load(infile)
return data
def plot_all_users_data(dataset_name, user_data, outfile_name='user_data.pdf'):
dataset_data = user_data[dataset_name]
#fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(10,15))
fig, ax1 = plt.subplots(figsize=(15,10))
acc_labels = ['fc_dev_acc', 'fc_acc']
all_scores = [data[acc_label] for data in dataset_data for acc_label in acc_labels]
bot, top = min(all_scores)-.01, max(all_scores)+.01
#plot_user_data(dataset_data, 'fc_dev_acc', 'lr_acc', ax1, xlim=(bot,top), ylim=(bot,top))
#plot_user_data(dataset_data, 'fc_dev_acc', 'fc_acc', ax2, xlim=(bot,top), ylim=(bot,top))
#plot_user_data(dataset_data, 'fc_acc', 'lr_acc', ax3, xlim=(bot,top), ylim=(bot,top))
if dataset_name == 'amazon':
xlim = (.6, .73) # THESE WERE USED FOR THE PAPER WITH AMAZON
ylim = (.62, .705)
ax1.axhline(.669, color='k') #USED FOR PAPER AMAZON
ax1.axhline(.71, color='r') #SupAnc Paper
ax1.set_yticks([.62, .64, .66, .68, .70])
elif dataset_name == 'yelp':
ax1.axhline(.735, color='k') #Rough estimate for yelp 20 topics
ax1.axhline(.77, color='r') #SupAnc Paper
xlim = (.6, .83)
ylim = (.62, .805)
else: #Tripadvisor
ax1.axhline(.726, color='k') #Rough estimate for tripadvisor 20 topics
ax1.axhline(.776, color='r') #SupAnc Paper
xlim = (.6, .83)
ylim = (.62, .805)
plot_user_data(dataset_data, 'fc_dev_acc', 'fc_acc', ax1, xlim=xlim,
ylim=ylim, xtext='Development Set Accuracy', ytext='Test Set Accuracy')
#ax1.set_title(dataset_name, fontsize='30')
ax1.tick_params(labelsize=30)
plt.savefig(outfile_name, format='pdf')
plt.show()
return ax1
get_x_y = lambda x_label, y_label : ([data[x_label] for data in dataset_data],
[data[y_label] for data in dataset_data])
x_label = 'fc_dev_acc'
y_label = 'lr_acc'
x, y = get_x_y(x_label, y_label)
ax1.scatter(x, y)
ax1.set_xlabel(x_label)
ax1.set_ylabel(y_label)
ax1.set_xlim(bot,top)
ax1.set_ylim(bot,top)
x_label = 'fc_dev_acc'
y_label = 'fc_acc'
x, y = get_x_y(x_label, y_label)
ax2.scatter(x, y)
ax2.set_xlabel(x_label)
ax2.set_ylabel(y_label)
ax2.set_xlim(bot,top)
ax2.set_ylim(bot,top)
x_label = 'fc_acc'
y_label = 'lr_acc'
x, y = get_x_y(x_label, y_label)
ax3.scatter(x, y)
ax3.set_xlabel(x_label)
ax3.set_ylabel(y_label)
ax3.set_xlim(bot,top)
ax3.set_ylim(bot,top)
ax1.set_title(dataset_name, fontsize='30')
plt.show()
def get_all_user_data():
user_data = {}
for dataset_name in ['amazon', 'tripadvisor', 'yelp']:
user_data.update(make_user_data(dataset_name))
return user_data
def make_user_data(dataset_name):
user_data = []
base = f'UserData3/FinalAnchors/{dataset_name}/processed/'
for filename in os.listdir(base):
with open(base+filename, 'rb') as infile:
data = pickle.load(infile)
user_data += data
return {dataset_name: user_data}
def make_split_user_data(dataset_name):
user_data = []
base = f'UserData3/FinalAnchors/{dataset_name}/processed/'
for filename in os.listdir(base):
with open(base+filename, 'rb') as infile:
data = pickle.load(infile)
user_data.append(data)
return {dataset_name: user_data}
def combine_user_data():
base = 'UserData3/FinalAnchors'
user_data = {}
for dataset_name in ['amazon', 'yelp', 'tripadvisor']:
dataset_data = []
path = os.path.join(base, dataset_name, 'processed')
for filename in os.listdir(path):
with open(path+filename, 'rb') as infile:
dataset_data += pickle.load(infile)
user_data[dataset_name] = dataset_data
def process_filename(filename, dataset_name, attr_name):
corpus_pickle_path = 'UserData3'
final_anchors_path = 'UserData3/FinalAnchors/'+dataset_name
print('Getting corpus data...')
with open(os.path.join(corpus_pickle_path, dataset_name+'.pickle'), 'rb') as infile:
corpus_data = pickle.load(infile)
(Q, labels, train_dev_ids, train_dev_corpus,
train_ids, train_corpus, dev_corpus, dev_ids,
test_ids, test_corpus, gs_anchor_vectors,
gs_anchor_indices, gs_anchor_tokens) = corpus_data
with open(os.path.join(final_anchors_path, filename), 'rb') as infile:
user_data_raw = pickle.load(infile)
n_updates = len(user_data_raw)
user_data = user_data_to_dicts(user_data_raw, dataset_name, filename)
user_data[0]['first'] = True
max_ind = max(range(n_updates), key=lambda num: user_data[num]['fc_dev_acc'])
user_data[max_ind]['max'] = True
min_ind = min(range(n_updates), key=lambda num: user_data[num]['fc_dev_acc'])
user_data[min_ind]['min'] = True
for i, data in enumerate(user_data):
print(f' update: {i+1}/{len(user_data)}')
start = time.time()
fc_acc = get_fc_test_acc(Q, labels, train_dev_corpus,
test_corpus, data['anchor_vectors'],
attr_name)
end = time.time() - start
data['fc_acc'] = fc_acc
data['fc_time'] = end
print(' ', end)
with open(os.path.join(final_anchors_path, 'processed', 'processed_'+filename), 'wb') as outfile:
pickle.dump(user_data, outfile)
return user_data