-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoise.cpp
488 lines (412 loc) · 19.6 KB
/
noise.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#include "noise.h"
#include <algorithm>
#include <math.h>
#include "mathutil.h"
// The gradients are the midpoints of the vertices of a cube.
static const int grad3[12][3] = {
{ 1,1,0 },{ -1,1,0 },{ 1,-1,0 },{ -1,-1,0 },
{ 1,0,1 },{ -1,0,1 },{ 1,0,-1 },{ -1,0,-1 },
{ 0,1,1 },{ 0,-1,1 },{ 0,1,-1 },{ 0,-1,-1 }
};
// The gradients are the midpoints of the vertices of a hypercube.
static const int grad4[32][4] = {
{ 0,1,1,1 },{ 0,1,1,-1 },{ 0,1,-1,1 },{ 0,1,-1,-1 },
{ 0,-1,1,1 },{ 0,-1,1,-1 },{ 0,-1,-1,1 },{ 0,-1,-1,-1 },
{ 1,0,1,1 },{ 1,0,1,-1 },{ 1,0,-1,1 },{ 1,0,-1,-1 },
{ -1,0,1,1 },{ -1,0,1,-1 },{ -1,0,-1,1 },{ -1,0,-1,-1 },
{ 1,1,0,1 },{ 1,1,0,-1 },{ 1,-1,0,1 },{ 1,-1,0,-1 },
{ -1,1,0,1 },{ -1,1,0,-1 },{ -1,-1,0,1 },{ -1,-1,0,-1 },
{ 1,1,1,0 },{ 1,1,-1,0 },{ 1,-1,1,0 },{ 1,-1,-1,0 },
{ -1,1,1,0 },{ -1,1,-1,0 },{ -1,-1,1,0 },{ -1,-1,-1,0 }
};
// Permutation table. The same list is repeated twice.
static const int perm[512] = {
151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,
8,99,37,240,21,10,23,190,6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,
35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168,68,175,74,165,71,
134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,
55,46,245,40,244,102,143,54,65,25,63,161,1,216,80,73,209,76,132,187,208, 89,
18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186,3,64,52,217,226,
250,124,123,5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,
189,28,42,223,183,170,213,119,248,152,2,44,154,163,70,221,153,101,155,167,43,
172,9,129,22,39,253,19,98,108,110,79,113,224,232,178,185,112,104,218,246,97,
228,251,34,242,193,238,210,144,12,191,179,162,241,81,51,145,235,249,14,239,
107,49,192,214,31,181,199,106,157,184,84,204,176,115,121,50,45,127,4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,
8,99,37,240,21,10,23,190,6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,
35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168,68,175,74,165,71,
134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,
55,46,245,40,244,102,143,54,65,25,63,161,1,216,80,73,209,76,132,187,208, 89,
18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186,3,64,52,217,226,
250,124,123,5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,
189,28,42,223,183,170,213,119,248,152,2,44,154,163,70,221,153,101,155,167,43,
172,9,129,22,39,253,19,98,108,110,79,113,224,232,178,185,112,104,218,246,97,
228,251,34,242,193,238,210,144,12,191,179,162,241,81,51,145,235,249,14,239,
107,49,192,214,31,181,199,106,157,184,84,204,176,115,121,50,45,127,4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
// 2D Multi-octave Simplex noise.
// For each octave, a higher frequency/lower amplitude function will be added to the original.
// The higher the persistence [0-1], the more of each succeeding octave will be added.
float Noise::fractal_2D(float x, float y, float octaves, float frequency, float persistence, float lacunarity) {
float total = 0;
float amplitude = 1;
// We have to keep track of the largest possible amplitude,
// because each octave adds more, and we need a value in [-1, 1].
float maxAmplitude = 0;
for (int i = 0; i < octaves; i++) {
total += raw_2D(x * frequency, y * frequency) * amplitude;
maxAmplitude += amplitude;
amplitude *= persistence;
frequency *= lacunarity;
}
return total / maxAmplitude;
}
// 3D Multi-octave Simplex noise.
// For each octave, a higher frequency/lower amplitude function will be added to the original.
// The higher the persistence [0-1], the more of each succeeding octave will be added.
float Noise::fractal_3D(float x, float y, float z, float octaves, float frequency, float persistence, float lacunarity) {
float total = 0;
float amplitude = 1;
// We have to keep track of the largest possible amplitude,
// because each octave adds more, and we need a value in [-1, 1].
float maxAmplitude = 0;
for (int i = 0; i < octaves; i++) {
total += raw_3D(x * frequency, y * frequency, z * frequency) * amplitude;
maxAmplitude += amplitude;
amplitude *= persistence;
frequency *= lacunarity;
}
return total / maxAmplitude;
}
float Noise::ridged_2D(float x, float y, float octaves, float frequency, float persistence, float lacunarity) {
float total = 0;
float amplitude = 1;
for (int i = 0; i < octaves; i++) {
float noise = raw_2D(x * frequency, y * frequency);
total += (1.0f - fabsf(noise))*amplitude;
amplitude *= persistence;
frequency *= lacunarity;
}
return total - 1.0f;
}
// 2D Scaled Multi-octave Simplex noise.
// Returned value will be between loBound and hiBound.
float Noise::fractal_scaled_2D(float x, float y,
float octaves, float frequency, float low, float high, float persistence, float lacunarity) {
return fractal_2D(x, y, octaves, frequency, persistence, lacunarity) * (high - low) / 2 + (high + low) / 2;
}
// 3D Scaled Multi-octave Simplex noise.
// Returned value will be between loBound and hiBound.
float Noise::fractal_scaled_3D(float x, float y, float z,
float octaves, float frequency, float low, float high, float persistence, float lacunarity) {
return fractal_3D(x, y, z, octaves, frequency, persistence, lacunarity) * (high - low) / 2 + (high + low) / 2;
}
// 2D Scaled Simplex raw noise.
// Returned value will be between loBound and hiBound.
float Noise::scaled_2D(float x, float y, float low, float high) {
return raw_2D(x, y) * (high - low) / 2 + (high + low) / 2;
}
// 3D Scaled Simplex raw noise.
// Returned value will be between loBound and hiBound.
float Noise::scaled_3D(float x, float y, float z, float low, float high) {
return raw_3D(x, y, z) * (high - low) / 2 + (high + low) / 2;
}
// 2D raw Simplex noise
float Noise::raw_2D(float x, float y) {
// Noise contributions from the three corners
float n0, n1, n2;
// Skew the input space to determine which simplex cell we're in
float F2 = 0.5 * (sqrtf(3.0) - 1.0);
// Hairy factor for 2D
float s = (x + y) * F2;
int i = fastfloor(x + s);
int j = fastfloor(y + s);
float G2 = (3.0 - sqrtf(3.0)) / 6.0;
float t = (i + j) * G2;
// Unskew the cell origin back to (x,y) space
float X0 = i - t;
float Y0 = j - t;
// The x,y distances from the cell origin
float x0 = x - X0;
float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
int ii = i & 255;
int jj = j & 255;
int gi0 = perm[ii + perm[jj]] % 12;
int gi1 = perm[ii + i1 + perm[jj + j1]] % 12;
int gi2 = perm[ii + 1 + perm[jj + 1]] % 12;
// Calculate the contribution from the three corners
float t0 = 0.5 - x0*x0 - y0*y0;
if (t0 < 0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
}
float t1 = 0.5 - x1*x1 - y1*y1;
if (t1 < 0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
}
float t2 = 0.5 - x2*x2 - y2*y2;
if (t2 < 0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
}
// 3D raw Simplex noise
float Noise::raw_3D(float x, float y, float z) {
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
float F3 = 1.0 / 3.0;
float s = (x + y + z)*F3; // Very nice and simple skew factor for 3D
int i = fastfloor(x + s);
int j = fastfloor(y + s);
int k = fastfloor(z + s);
float G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
float t = (i + j + k)*G3;
float X0 = i - t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j - t;
float Z0 = k - t;
float x0 = x - X0; // The x,y,z distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order
else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order
else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order
} else { // x0<y0
if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order
else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order
else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
float y1 = y0 - j1 + G3;
float z1 = z0 - k1 + G3;
float x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
float y2 = y0 - j2 + 2.0*G3;
float z2 = z0 - k2 + 2.0*G3;
float x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
float y3 = y0 - 1.0 + 3.0*G3;
float z3 = z0 - 1.0 + 3.0*G3;
// Work out the hashed gradient indices of the four simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int gi0 = perm[ii + perm[jj + perm[kk]]] % 12;
int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12;
int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12;
int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12;
// Calculate the contribution from the four corners
float t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
if (t0 < 0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
}
float t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
if (t1 < 0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
}
float t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if (t2 < 0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
}
float t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
if (t3 < 0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0*(n0 + n1 + n2 + n3);
}
int Noise::fastfloor(float x) { return x > 0 ? (int)x : (int)x - 1; }
float Noise::dot(const int* g, float x, float y) { return g[0] * x + g[1] * y; }
float Noise::dot(const int* g, float x, float y, float z) { return g[0] * x + g[1] * y + g[2] * z; }
////////////////////////
///// WORLEY NOISE /////
////////////////////////
static int poisson[256] =
{ 4,3,1,1,1,2,4,2,2,2,5,1,0,2,1,2,2,0,4,3,2,1,2,1,3,2,2,4,2,2,5,1,2,3,2,2,2,2,2,3,
2,4,2,5,3,2,2,2,5,3,3,5,2,1,3,3,4,4,2,3,0,4,2,2,2,1,3,2,2,2,3,3,3,1,2,0,2,1,1,2,
2,2,2,5,3,2,3,2,3,2,2,1,0,2,1,1,2,1,2,2,1,3,4,2,2,2,5,4,2,4,2,2,5,4,3,2,2,5,4,3,
3,3,5,2,2,2,2,2,3,1,1,4,2,1,3,3,4,3,2,4,3,3,3,4,5,1,4,2,4,3,1,2,3,5,3,2,1,3,1,3,
3,3,2,3,1,5,5,4,2,2,4,1,3,4,1,5,3,3,5,3,4,3,2,2,1,1,1,1,1,2,4,5,4,5,4,2,1,5,1,1,
2,3,3,3,2,5,2,3,3,2,0,2,1,1,4,2,1,3,2,1,2,2,3,2,5,5,3,4,5,5,2,4,4,5,3,2,2,2,1,4,
2,3,3,4,2,5,4,2,4,2,2,2,4,5,3,2 };
inline int32_t dfloor(double x) {
return x < 0 ? ((int32_t)x - 1) : ((int32_t)x);
}
inline double euclidian(double dx, double dy, double dz) {
return dx*dx + dy*dy + dz*dz;
}
inline double manhattan(double dx, double dy, double dz) {
return fabs(dx) + fabs(dy) + fabs(dz);
}
inline double chebyshev(double dx, double dy, double dz) {
return std::max(std::max(fabs(dx), fabs(dy)), fabs(dz));
}
// private array for computation
static double at[3];
// pointer to distance function
double(*distance_function)(double, double, double);
// used to make sure mean value of F[0] is 1.0
const double DENSITY_ADJUSTMENT = 0.85;
void Noise::worley(float x, float y, float z,
size_t max_order, double* F, uint32_t* ID, DIST_FUNC dfunc, float frequency) {
if (dfunc == EUCLIDIAN) {
distance_function = &euclidian;
} else if (dfunc == MANHATTAN) {
distance_function = &manhattan;
} else {
distance_function = &chebyshev;
}
at[0] = x * frequency;
at[1] = y * frequency;
at[2] = z * frequency;
double x2, y2, z2, mx2, my2, mz2;
int32_t int_at[3];
size_t i;
for (i = 0; i < max_order; ++i) {
F[i] = 999999.9;
}
int_at[0] = dfloor(at[0]);
int_at[1] = dfloor(at[1]);
int_at[2] = dfloor(at[2]);
addSamples(int_at[0], int_at[1], int_at[2], max_order, F, ID);
x2 = at[0] - int_at[0];
y2 = at[1] - int_at[1];
z2 = at[2] - int_at[2];
mx2 = (1.0 - x2)*(1.0 - x2);
my2 = (1.0 - y2)*(1.0 - y2);
mz2 = (1.0 - z2)*(1.0 - z2);
x2 *= x2;
y2 *= y2;
z2 *= z2;
// 6 facing neighbors of center cube are closest
// so they have greatest chance for feature point
if (x2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1], int_at[2], max_order, F, ID);
if (y2 < F[max_order - 1]) addSamples(int_at[0], int_at[1] - 1, int_at[2], max_order, F, ID);
if (z2 < F[max_order - 1]) addSamples(int_at[0], int_at[1], int_at[2] - 1, max_order, F, ID);
if (mx2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1], int_at[2], max_order, F, ID);
if (my2 < F[max_order - 1]) addSamples(int_at[0], int_at[1] + 1, int_at[2], max_order, F, ID);
if (mz2 < F[max_order - 1]) addSamples(int_at[0], int_at[1], int_at[2] + 1, max_order, F, ID);
// next closest is 12 edge cubes
if (x2 + y2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1] - 1, int_at[2], max_order, F, ID);
if (x2 + z2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1], int_at[2] - 1, max_order, F, ID);
if (y2 + z2 < F[max_order - 1]) addSamples(int_at[0], int_at[1] - 1, int_at[2] - 1, max_order, F, ID);
if (mx2 + my2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1] + 1, int_at[2], max_order, F, ID);
if (mx2 + mz2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1], int_at[2] + 1, max_order, F, ID);
if (my2 + mz2 < F[max_order - 1]) addSamples(int_at[0], int_at[1] + 1, int_at[2] + 1, max_order, F, ID);
if (x2 + my2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1] + 1, int_at[2], max_order, F, ID);
if (x2 + mz2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1], int_at[2] + 1, max_order, F, ID);
if (y2 + mz2 < F[max_order - 1]) addSamples(int_at[0], int_at[1] - 1, int_at[2] + 1, max_order, F, ID);
if (mx2 + y2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1] - 1, int_at[2], max_order, F, ID);
if (mx2 + z2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1], int_at[2] - 1, max_order, F, ID);
if (my2 + z2 < F[max_order - 1]) addSamples(int_at[0], int_at[1] + 1, int_at[2] - 1, max_order, F, ID);
// final 8 corners
if (x2 + y2 + z2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1] - 1, int_at[2] - 1, max_order, F, ID);
if (x2 + y2 + mz2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1] - 1, int_at[2] + 1, max_order, F, ID);
if (x2 + my2 + z2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1] + 1, int_at[2] - 1, max_order, F, ID);
if (x2 + my2 + mz2 < F[max_order - 1]) addSamples(int_at[0] - 1, int_at[1] + 1, int_at[2] + 1, max_order, F, ID);
if (mx2 + y2 + z2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1] - 1, int_at[2] - 1, max_order, F, ID);
if (mx2 + y2 + mz2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1] - 1, int_at[2] + 1, max_order, F, ID);
if (mx2 + my2 + z2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1] + 1, int_at[2] - 1, max_order, F, ID);
if (mx2 + my2 + mz2 < F[max_order - 1]) addSamples(int_at[0] + 1, int_at[1] + 1, int_at[2] + 1, max_order, F, ID);
// We're done! Convert to right size scale
for (i = 0; i < max_order; i++) {
F[i] = sqrt(F[i]) / DENSITY_ADJUSTMENT;
}
}
void Noise::addSamples(int32_t xi, int32_t yi, int32_t zi,
size_t max_order, double* F, uint32_t* ID) {
double dx, dy, dz, fx, fy, fz, d2;
int32_t count, index;
uint32_t seed;
uint32_t this_id;
// each cube has random number seed based on cubes ID
// LCG using Knuth constants for maximal periods
seed = 702395077 * xi + 915488749 * yi + 2120969693 * zi;
count = poisson[seed >> 24]; // 256 element table lookup. using MSB
seed = 1402024253 * seed + 586950981; //churns seed
for (int32_t j = 0; j < count; ++j) {
this_id = seed;
// get random values for fx,fy,fz based on seed
seed = 1402024253 * seed + 586950981;
fx = (seed + 0.5)*(1.0 / 4294967296.0);
seed = 1402024253 * seed + 586950981;
fy = (seed + 0.5)*(1.0 / 4294967296.0);
seed = 1402024253 * seed + 586950981;
fz = (seed + 0.5)*(1.0 / 4294967296.0);
seed = 1402024253 * seed + 586950981;
dx = xi + fx - at[0];
dy = yi + fy - at[1];
dz = zi + fz - at[2];
// get distance squared using specified function
d2 = distance_function(dx, dy, dz);
// in order insertion
if (d2 < F[max_order - 1]) {
index = max_order;
while (index > 0 && d2 < F[index - 1]) index--;
// insert this new point into slot # <index>
// bump down more distant information to make room for this new point.
for (int32_t i = max_order - 2; i >= index; i--) {
F[i + 1] = F[i];
ID[i + 1] = ID[i];
}
// insert the new point's information into the list.
F[index] = d2;
ID[index] = this_id;
}
}
}
float Noise::fractal_worley_3D(float x, float y, float z, DIST_FUNC dfunc,
float octaves, float frequency, float persistence, float lacunarity) {
double total = 0;
double amplitude = 1;
float maxAmplitude = 0;
const int max = 3;
double f[max];
uint32_t id[max];
for (int i = 0; i < octaves; i++) {
worley(x, y, z, max, f, id, dfunc, frequency);
float n = static_cast<float>(f[1]-f[0]);
total += n * amplitude;
maxAmplitude += amplitude;
amplitude *= persistence;
frequency *= lacunarity;
}
return total / maxAmplitude;
}