-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSample generator.py
42 lines (28 loc) · 1.5 KB
/
Sample generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import cv2
cam = cv2.VideoCapture(0, cv2.CAP_DSHOW) #create a video capture object which is helpful to capture videos through webcam
cam.set(3, 640) # set video FrameWidth
cam.set(4, 480) # set video FrameHeight
detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
#Haar Cascade classifier is an effective object detection approach
face_id = input("Enter a Numeric user ID here: ")
#Use integer ID for every new face (0,1,2,3,4,5,6,7,8,9........)
print("Taking samples, look at camera ....... ")
count = 0 # Initializing sampling face count
while True:
ret, img = cam.read() #read the frames using the above created object
converted_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #The function converts an input image from one color space to another
faces = detector.detectMultiScale(converted_image, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2) #used to draw a rectangle on any image
count += 1
cv2.imwrite("samples/face." + str(face_id) + '.' + str(count) + ".jpg", converted_image[y:y+h,x:x+w])
# To capture & Save images into the datasets folder
cv2.imshow('image', img) #Used to display an image in a window
k = cv2.waitKey(100) & 0xff # Waits for a pressed key
if k == 27: # Press 'ESC' to stop
break
elif count >= 10: # Take 50 sample (More sample --> More accuracy)
break
print("Samples taken now closing the program....")
cam.release()
cv2.destroyAllWindows()