-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFace recognition.py
67 lines (44 loc) · 2.04 KB
/
Face recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import cv2
recognizer = cv2.face.LBPHFaceRecognizer_create() # Local Binary Patterns Histograms
recognizer.read('trainer/trainer.yml') #load trained model
cascadePath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath) #initializing haar cascade for object detection approach
font = cv2.FONT_HERSHEY_SIMPLEX #denotes the font type
id = 2 #number of persons you want to Recognize
names = ['','Sohan'] #names, leave first empty bcz counter starts from 0
cam = cv2.VideoCapture(0, cv2.CAP_DSHOW) #cv2.CAP_DSHOW to remove warning
cam.set(3, 640) # set video FrameWidht
cam.set(4, 480) # set video FrameHeight
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
# flag = True
while True:
ret, img =cam.read() #read the frames using the above created object
converted_image = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #The function converts an input image from one color space to another
faces = faceCascade.detectMultiScale(
converted_image,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2) #used to draw a rectangle on any image
id, accuracy = recognizer.predict(converted_image[y:y+h,x:x+w]) #to predict on every single image
# Check if accuracy is less them 100 ==> "0" is perfect match
if (accuracy < 100):
id = names[id]
accuracy = " {0}%".format(round(100 - accuracy))
else:
id = "unknown"
accuracy = " {0}%".format(round(100 - accuracy))
cv2.putText(img, str(id), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(accuracy), (x+5,y+h-5), font, 1, (255,255,0), 1)
cv2.imshow('camera',img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
# Do a bit of cleanup
print("Thanks for using this program, have a good day.")
cam.release()
cv2.destroyAllWindows()