-
Notifications
You must be signed in to change notification settings - Fork 788
/
Copy pathelaboratePoint2KalmanFilter.cpp
379 lines (294 loc) · 16.9 KB
/
elaboratePoint2KalmanFilter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file elaboratePoint2KalmanFilter.cpp
*
* simple linear Kalman filter on a moving 2D point, but done using factor graphs
* This example manually creates all of the needed data structures
*
* @date Aug 19, 2011
* @author Frank Dellaert
* @author Stephen Williams
*/
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
//#include <gtsam/nonlinear/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/geometry/Point2.h>
#include <cassert>
using namespace std;
using namespace gtsam;
int main() {
// [code below basically does SRIF with Cholesky]
// Create a factor graph to perform the inference
GaussianFactorGraph::shared_ptr linearFactorGraph(new GaussianFactorGraph);
// Create the desired ordering
Ordering::shared_ptr ordering(new Ordering);
// Create a structure to hold the linearization points
Values linearizationPoints;
// Ground truth example
// Start at origin, move to the right (x-axis): 0,0 0,1 0,2
// Motion model is just moving to the right (x'-x)^2
// Measurements are GPS like, (x-z)^2, where z is a 2D measurement
// i.e., we should get 0,0 0,1 0,2 if there is no noise
// Create new state variable
Symbol x0('x',0);
ordering->insert(x0, 0);
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
// This is equivalent to x_0 and P_0
Point2 x_initial(0,0);
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
PriorFactor<Point2> factor1(x0, x_initial, P_initial);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x0, x_initial);
linearFactorGraph->push_back(factor1.linearize(linearizationPoints, *ordering));
// Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
// In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
// For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
// Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
// where F is the state transition model/matrix, B is the control input model,
// and w is zero-mean, Gaussian white noise with covariance Q
// Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
// physical property, such as velocity or acceleration, and G is derived from physics
//
// For the purposes of this example, let us assume we are using a constant-position model and
// the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
// and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1];
//
// In the case of factor graphs, the factor related to the motion model would be defined as
// f2 = (f(x_{t}) - x_{t+1}) * Q^-1 * (f(x_{t}) - x_{t+1})^T
// Conveniently, there is a factor type, called a BetweenFactor, that can generate this factor
// given the expected difference, f(x_{t}) - x_{t+1}, and Q.
// so, difference = x_{t+1} - x_{t} = F*x_{t} + B*u_{t} - I*x_{t}
// = (F - I)*x_{t} + B*u_{t}
// = B*u_{t} (for our example)
Symbol x1('x',1);
ordering->insert(x1, 1);
Point2 difference(1,0);
SharedDiagonal Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor2(x0, x1, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x1, x_initial);
linearFactorGraph->push_back(factor2.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f1-(x0)-f2-(x1)
// where factor f1 is just the prior from time t0, P(x0)
// and factor f2 is from the motion model
// Eliminate this in order x0, x1, to get Bayes net P(x0|x1)P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
//
// Because of the way GTSAM works internally, we have used nonlinear class even though this example
// system is linear. We first convert the nonlinear factor graph into a linear one, using the specified
// ordering. Linear factors are simply numbered, and are not accessible via named key like the nonlinear
// variables. Also, the nonlinear factors are linearized around an initial estimate. For a true linear
// system, the initial estimate is not important.
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver0(*linearFactorGraph);
GaussianBayesNet::shared_ptr linearBayesNet = solver0.eliminate();
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = optimize(*linearBayesNet);
Point2 x1_predict = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_predict.print("X1 Predict");
// Update the new linearization point to the new estimate
linearizationPoints.update(x1, x1_predict);
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// Some care must be done here, as the linearization point in future steps will be different
// than what was used when the factor was created.
// f = || F*dx1' - (F*x0 - x1) ||^2, originally linearized at x1 = x0
// After this step, the factor needs to be linearized around x1 = x1_predict
// This changes the factor to f = || F*dx1'' - b'' ||^2
// = || F*(dx1' - (dx1' - dx1'')) - b'' ||^2
// = || F*dx1' - F*(dx1' - dx1'') - b'' ||^2
// = || F*dx1' - (b'' + F(dx1' - dx1'')) ||^2
// -> b' = b'' + F(dx1' - dx1'')
// -> b'' = b' - F(dx1' - dx1'')
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
const GaussianConditional::shared_ptr& cg0 = linearBayesNet->back();
assert(cg0->nrFrontals() == 1);
assert(cg0->nrParents() == 0);
linearFactorGraph->add(0, cg0->R(), cg0->d() - cg0->R()*result[ordering->at(x1)], noiseModel::Diagonal::Sigmas(cg0->get_sigmas(), true));
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1)
// where f3 is the prior from the previous step, and
// where f4 is a measurement factor
//
// So, now we need to create the measurement factor, f4
// For the Kalman Filter, this is the measurement function, h(x_{t}) = z_{t}
// Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
// where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
//
// For the purposes of this example, let us assume we have something like a GPS that returns
// the current position of the robot. For this simple example, we can use a PriorFactor to model the
// observation as it depends on only a single state variable, x1. To model real sensor observations
// generally requires the creation of a new factor type. For example, factors for range sensors, bearing
// sensors, and camera projections have already been added to GTSAM.
//
// In the case of factor graphs, the factor related to the measurements would be defined as
// f4 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
Point2 z1(1.0, 0.0);
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor4(x1, z1, R1);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor4.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f3-(x1)-f4
// where factor f3 is the prior from previous time ( P(x1) )
// and factor f4 is from the measurement, z1 ( P(x1|z1) )
// Eliminate this in order x1, to get Bayes net P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver1(*linearFactorGraph);
linearBayesNet = solver1.eliminate();
// Extract the current estimate of x1 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x1_update = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_update.print("X1 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x1, x1_update);
// Wash, rinse, repeat for another time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration
const GaussianConditional::shared_ptr& cg1 = linearBayesNet->back();
assert(cg1->nrFrontals() == 1);
assert(cg1->nrParents() == 0);
JacobianFactor tmpPrior1 = JacobianFactor(*cg1);
linearFactorGraph->add(0, tmpPrior1.getA(tmpPrior1.begin()), tmpPrior1.getb() - tmpPrior1.getA(tmpPrior1.begin()) * result[ordering->at(x1)], tmpPrior1.get_model());
// Create a key for the new state
Symbol x2('x',2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
ordering->insert(x2, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) <, 0.1, 0.1));
BetweenFactor<Point2> factor6(x1, x2, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x2, x1_update);
linearFactorGraph->push_back(factor6.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver2(*linearFactorGraph);
linearBayesNet = solver2.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_predict = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_predict.print("X2 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg2 = linearBayesNet->back();
assert(cg2->nrFrontals() == 1);
assert(cg2->nrParents() == 0);
JacobianFactor tmpPrior2 = JacobianFactor(*cg2);
linearFactorGraph->add(0, tmpPrior2.getA(tmpPrior2.begin()), tmpPrior2.getb() - tmpPrior2.getA(tmpPrior2.begin()) * result[ordering->at(x2)], tmpPrior2.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
// And update using z2 ...
Point2 z2(2.0, 0.0);
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor8(x2, z2, R2);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor8.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f7-(x2)-f8
// where factor f7 is the prior from previous time ( P(x2) )
// and factor f8 is from the measurement, z2 ( P(x2|z2) )
// Eliminate this in order x2, to get Bayes net P(x2)
// As this is a filter, all we need is the posterior P(x2), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver3(*linearFactorGraph);
linearBayesNet = solver3.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_update = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_update.print("X2 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_update);
// Wash, rinse, repeat for a third time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg3 = linearBayesNet->back();
assert(cg3->nrFrontals() == 1);
assert(cg3->nrParents() == 0);
JacobianFactor tmpPrior3 = JacobianFactor(*cg3);
linearFactorGraph->add(0, tmpPrior3.getA(tmpPrior3.begin()), tmpPrior3.getb() - tmpPrior3.getA(tmpPrior3.begin()) * result[ordering->at(x2)], tmpPrior3.get_model());
// Create a key for the new state
Symbol x3('x',3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
ordering->insert(x3, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor10(x2, x3, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x3, x2_update);
linearFactorGraph->push_back(factor10.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver4(*linearFactorGraph);
linearBayesNet = solver4.eliminate();
// Extract the current estimate of x3 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_predict = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_predict.print("X3 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg4 = linearBayesNet->back();
assert(cg4->nrFrontals() == 1);
assert(cg4->nrParents() == 0);
JacobianFactor tmpPrior4 = JacobianFactor(*cg4);
linearFactorGraph->add(0, tmpPrior4.getA(tmpPrior4.begin()), tmpPrior4.getb() - tmpPrior4.getA(tmpPrior4.begin()) * result[ordering->at(x3)], tmpPrior4.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x3, 0);
// And update using z3 ...
Point2 z3(3.0, 0.0);
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor12(x3, z3, R3);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor12.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f11-(x3)-f12
// where factor f11 is the prior from previous time ( P(x3) )
// and factor f12 is from the measurement, z3 ( P(x3|z3) )
// Eliminate this in order x3, to get Bayes net P(x3)
// As this is a filter, all we need is the posterior P(x3), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver5(*linearFactorGraph);
linearBayesNet = solver5.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_update = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_update.print("X3 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_update);
return 0;
}