-
Notifications
You must be signed in to change notification settings - Fork 788
/
Copy pathPose2SLAMExampleExpressions.cpp
85 lines (68 loc) · 3.33 KB
/
Pose2SLAMExampleExpressions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExampleExpressions.cpp
* @brief Expressions version of Pose2SLAMExample.cpp
* @date Oct 2, 2014
* @author Frank Dellaert
*/
// The two new headers that allow using our Automatic Differentiation Expression framework
#include <gtsam/slam/expressions.h>
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
// For an explanation of headers below, please see Pose2SLAMExample.cpp
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv) {
// 1. Create a factor graph container and add factors to it
ExpressionFactorGraph graph;
// Create Expressions for unknowns
Pose2_ x1(1), x2(2), x3(3), x4(4), x5(5);
// 2a. Add a prior on the first pose, setting it to the origin
auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.addExpressionFactor(x1, Pose2(0, 0, 0), priorNoise);
// For simplicity, we use the same noise model for odometry and loop closures
auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
// 2b. Add odometry factors
graph.addExpressionFactor(between(x1, x2), Pose2(2, 0, 0), model);
graph.addExpressionFactor(between(x2, x3), Pose2(2, 0, M_PI_2), model);
graph.addExpressionFactor(between(x3, x4), Pose2(2, 0, M_PI_2), model);
graph.addExpressionFactor(between(x4, x5), Pose2(2, 0, M_PI_2), model);
// 2c. Add the loop closure constraint
graph.addExpressionFactor(between(x5, x2), Pose2(2, 0, M_PI_2), model);
graph.print("\nFactor Graph:\n"); // print
// 3. Create the data structure to hold the initialEstimate estimate to the
// solution For illustrative purposes, these have been deliberately set to
// incorrect values
Values initialEstimate;
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2));
initialEstimate.insert(3, Pose2(4.1, 0.1, M_PI_2));
initialEstimate.insert(4, Pose2(4.0, 2.0, M_PI));
initialEstimate.insert(5, Pose2(2.1, 2.1, -M_PI_2));
initialEstimate.print("\nInitial Estimate:\n"); // print
// 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
GaussNewtonParams parameters;
parameters.relativeErrorTol = 1e-5;
parameters.maxIterations = 100;
GaussNewtonOptimizer optimizer(graph, initialEstimate, parameters);
Values result = optimizer.optimize();
result.print("Final Result:\n");
// 5. Calculate and print marginal covariances for all variables
cout.precision(3);
Marginals marginals(graph, result);
cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
cout << "x4 covariance:\n" << marginals.marginalCovariance(4) << endl;
cout << "x5 covariance:\n" << marginals.marginalCovariance(5) << endl;
return 0;
}