-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.lua
1069 lines (909 loc) · 42.4 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-- uses code from:
-- https://github.com/SeanNaren/deepspeech.torch
require 'utils'
require 'UtilsMultiGPU'
require 'lmdb'
require 'optim'
require 'nn'
stringx = require 'pl.stringx'
local cmd = torch.CmdLine()
cmd:option('-saveClassifierModel', false, 'Save model after training/testing')
cmd:option('-saveClassifierPath', false, 'Path to save classifier model')
cmd:option('-savePredDir', '.', 'Directory to save predictions')
cmd:option('-predFile', 'pred.txt', 'File to save classifier predictions on test set')
cmd:option('-trainPredFile', '', 'File to save classifier predictions on train set (leave empty for not saving predictions on train)')
cmd:option('-loadPath', 'deepspeech.t7', 'Path of final model to save/load')
cmd:option('-modelName', 'DeepSpeech', 'Which Deep Speech model is used (DeepSpeech or DeepSpeech-light)')
cmd:option('-nGPU', 1, 'Number of GPUs, set -1 to use CPU')
cmd:option('-trainingSetLMDBPath', '/data/sls/scratch/belinkov/asr/prediction/data/timit_lmdb/train/', 'Path to LMDB training dataset')
cmd:option('-validationSetLMDBPath', '/data/sls/scratch/belinkov/asr/prediction/data/timit_lmdb/test/', 'Path to LMDB test dataset')
cmd:option('-testSetLMDBPath', '/data/sls/scratch/belinkov/asr/prediction/data/timit_lmdb/test/', 'Path to LMDB test dataset')
--cmd:option('-logsTrainPath', './logs/TrainingLoss/', ' Path to save Training logs')
--cmd:option('-logsValidationPath', './logs/ValidationScores/', ' Path to save Validation logs')
cmd:option('-logFile', './log.txt', 'File to save logs')
cmd:option('-plot', false, 'Plot loss and accuracy')
cmd:option('-dictionaryPath', '/usr/users/belinkov/CTCSpeechRecognition/dictionary', ' File containing the dictionary to use')
cmd:option('-batchSize', 16, 'Batch size in training')
cmd:option('-validationBatchSize', 1, 'Batch size for validation')
cmd:option('-patience', 5, 'Patience when training the classifier')
cmd:option('-optim', 'ADAM', 'Optimizer to use in the classifier (ADAM/ADAGRAD/ADADELTA/SGD)')
cmd:option('-classifierSize', 500, 'Classifier hidden layer size')
cmd:option('-linearClassifier', false, 'Use linear classifier')
cmd:option('-twoHiddenClassifier', false, 'Use a classifier with 2 hidden layers')
cmd:option('-epochs', 30, 'Number of epochs for training the classifier')
cmd:option('-learningRate', 0.001, 'Learning rate for the classifier')
cmd:option('-reprLayer', 'cnn', 'Deep speech representation to use (cnn | rnn | cnnk (k=1,2) | rnnk (k=1...8) | input')
cmd:option('-convStep', 2, 'Convolution step size in time dimension (2 in deep speech model)')
cmd:option('-phoneClasses', false, 'Use phone classes (must also specify phoneClassesFile)')
cmd:option('-phoneClassesFile', '', 'File containing list of phone classes, every line has: phone<SPACE>class')
cmd:option('-aggregateFrames', false, 'Aggregrate frames in each phone (by default as an average) and do phonme classification')
cmd:option('-writeCTCPredictions', false, 'Write predictions of the full CTC model to file')
cmd:option('-window', 0, 'Number of frames on each side of the current frame to use as features for classification')
local opt = cmd:parse(arg)
print(opt)
function init(opt)
opt.predFile = paths.concat(opt.savePredDir, opt.predFile)
if opt.trainPredFile:len() > 0 then
opt.trainPredFile = paths.concat(opt.savePredDir, opt.trainPredFile)
else
opt.trainPredFile = nil
end
if opt.nGPU > 0 then
-- needed for loadDataParallel
require 'cunn'
require 'cudnn'
require 'BatchBRNNReLU'
end
print('==> Loading deep speech model')
model = loadDataParallel(opt.loadPath, opt.nGPU)
print(model)
model:evaluate()
cnnLayers = model.modules[1]
if opt.convStep ~= 2 then
print('==> Setting CNN step to ' .. opt.convStep .. ' in time timension')
cnnLayers.modules[1].dW = opt.convStep
cnnLayers.modules[4].dW = opt.convStep
end
rnnLayers = model.modules[2]
fcLayer = model.modules[3]
transposeLayer = model.modules[4]
--local modelDef = require(opt.modelName)
--calSize = modelDef[2]
local freq = getFreq(opt.trainingSetLMDBPath)
-- first pass: get labels
print('==> first pass: getting labels')
label2idx, idx2label = getLabels(opt.trainingSetLMDBPath)
local classes = {}
for idx, _ in ipairs(idx2label) do
table.insert(classes, idx)
end
print('label2idx:')
print(label2idx)
print('idx2label:')
print(idx2label)
print('classes:')
print(classes)
local numClasses = #idx2label
if opt.phoneClasses then
assert(paths.filep(opt.phoneClassesFile), 'bad file in opt.phoneClassesFile')
print('==> loading phone classes')
phone2class, phoneClasses = getPhoneClasses(opt.phoneClassesFile)
numClasses = #phoneClasses
print('==> replacing labels with phone classes')
label2idx, idx2label = {}, {}
for i, label in pairs(phoneClasses) do
if not label2idx[label] then
idx2label[#idx2label+1] = label
label2idx[label] = #idx2label
end
end
classes = {}
for idx, _ in ipairs(idx2label) do
table.insert(classes, idx)
end
print('label2idx:')
print(label2idx)
print('idx2label:')
print(idx2label)
print('classes:')
print(classes)
numClasses = #idx2label
end
-- define classifier
local classifierInputSize
if opt.reprLayer == 'cnn' or opt.reprLayer == 'cnn2' then
classifierInputSize = 32*41
elseif opt.reprLayer == 'cnn1' then
classifierInputSize = 32*61
elseif stringx.startswith(opt.reprLayer, 'rnn') then
if opt.modelName == 'DeepSpeech' then
classifierInputSize = 1760
elseif opt.modelName == 'DeepSpeech-light' then
classifierInputSize = 600
else
error('unsupported modelName ' .. opt.modelName)
end
elseif opt.reprLayer == 'input' then
classifierInputSize = freq
else
error('unsuppoerted reprLayer ' .. opt.reprLayer)
end
if opt.window > 0 then
print('==> using window of ' .. opt.window .. ' frames around current frame')
classifierInputSize = (2 * opt.window + 1) * classifierInputSize
end
classifier = nn.Sequential()
if opt.linearClassifier then
classifier:add(nn.Linear(classifierInputSize, numClasses))
else
classifier:add(nn.Linear(classifierInputSize, opt.classifierSize))
classifier:add(nn.Dropout(opt.classifierDropout))
classifier:add(nn.ReLU(true))
if opt.twoHiddenClassifier then
classifier:add(nn.Linear(opt.classifierSize, opt.classifierSize))
classifier:add(nn.Dropout(opt.classifierDropout))
classifier:add(nn.ReLU(true))
end
classifier:add(nn.Linear(opt.classifierSize, numClasses))
end
print('==> defined classification model:')
print(classifier)
-- define classification criterion
criterion = nn.CrossEntropyCriterion()
-- move to cuda
if opt.nGPU > 0 then
classifier = classifier:cuda()
criterion = criterion:cuda()
end
-- get classifier parameters and gradients
classifierParams, classifierGrads = classifier:getParameters()
-- define optimizer
if opt.optim == 'ADAM' then
optimState = {learningRate = opt.learningRate}
optimMethod = optim.adam
elseif opt.optim == 'ADAGRAD' then
optimState = {learningRate = opt.learningRate}
optimMethod = optim.adagrad
elseif opt.optim == 'ADADELTA' then
optimState = {}
optimMethod = optim.adadelta
else
optimState = {learningRate = opt.learningRate}
optimMethod = optim.sgd
end
confusion = optim.ConfusionMatrix(classes)
logger = optim.Logger(opt.logFile)
logger:setNames{'Train loss', 'Train accuracy', 'Validation loss', 'Validation accuracy', 'Test loss', 'Test accuracy'}
logger:style{'+-', '+', '+-', '+', '+-', '+'}
if opt.writeCTCPredictions then
require 'Mapper'
mapper = Mapper(opt.dictionaryPath)
end
collectgarbage()
end
function main(opt)
init(opt)
local dbSpectTrain, dbTransTrain, dbTimesTrain, trainDataSize = getSplitDBs(opt.trainingSetLMDBPath)
local dbSpectVal, dbTransVal, dbTimesVal, valDataSize = getSplitDBs(opt.validationSetLMDBPath)
local dbSpectTest, dbTransTest, dbTimesTest, testDataSize = getSplitDBs(opt.testSetLMDBPath)
local trainSpects, trainTranscripts, trainTimes = loadData(dbSpectTrain, dbTransTrain, dbTimesTrain)
local valSpects, valTranscripts, valTimes = loadData(dbSpectVal, dbTransVal, dbTimesVal)
local testSpects, testTranscripts, testTimes = loadData(dbSpectTest, dbTransTest, dbTimesTest)
-- do epochs
local epoch, bestEpoch, bestLoss = 1, 1, math.huge
while epoch <= opt.epochs and epoch - bestEpoch <= opt.patience do
trainLoss, trainAcc = train(trainSpects, trainTranscripts, trainTimes, trainDataSize, epoch, opt, opt.trainPredFile)
valLoss, valAcc = eval(valSpects, valTranscripts, valTimes, valDataSize, epoch, opt, 'val')
if valLoss < bestLoss then
bestEpoch = epoch
bestLoss = valLoss
if opt.saveClassifiermodel == 1 then
-- save current model
local filename = paths.concat(opt.saveClassifierPath, 'classifier_model_epoch_' .. epoch .. '.t7')
os.execute('mkdir -p ' .. sys.dirname(filename))
print('==> saving model to '..filename)
torch.save(filename, classifier)
end
end
testLoss, testAcc = eval(testSpects, testTranscripts, testTimes, testDataSize, epoch, opt, 'test', opt.predFile)
print('finished epoch ' .. epoch .. ', with val loss: ' .. valLoss)
print('best epoch: ' .. bestEpoch .. ', with val loss: ' .. bestLoss)
logger:add{trainLoss, trainAcc, valLoss, valAcc, testLoss, testAcc}
if opt.plot then logger:plot() end
epoch = epoch + 1
collectgarbage(); collectgarbage();
end
if epoch - bestEpoch > opt.patience then
print('==> reached patience of ' .. opt.patience .. ' epochs, stopping...')
end
end
function train(allSpects, allTranscripts, allTimes, dataSize, epoch, opt, predFilename)
local time = sys.clock()
classifier:training()
local predFile, goldFile, transFile
if predFilename then
predFile = torch.DiskFile(predFilename .. '.epoch' .. epoch, 'w')
goldFile = torch.DiskFile(predFilename .. '.gold', 'w')
transFile = torch.DiskFile(predFilename .. '.trans', 'w')
end
local shuffle = torch.randperm(dataSize)
local input = torch.Tensor()
if opt.nGPU > 0 then
input = input:cuda()
end
print('\n==> doing epoch on training data:')
print('\n==> epoch # ' .. epoch .. ' [batch size = ' .. opt.batchSize .. ']')
local totalLoss, numTotalPhonemes = 0, 0
for i = 1,dataSize,opt.batchSize do
collectgarbage()
xlua.progress(i, dataSize)
-- get next batch
local indices = shuffle[{ {i, math.min(i+opt.batchSize-1, dataSize) } }]
local inputsCPU, _, transcripts, times = nextBatch(indices, allSpects, allTranscripts, allTimes)
input:resize(inputsCPU:size()):copy(inputsCPU) -- batch size X 1 X freq X input seq length
-- closure
local evalLossGrad = function(x)
-- get new params
if x ~= classifierParams then classifierParams:copy(x) end
-- reset gradients
classifierGrads:zero()
local loss, numPhonemes = 0, 0
local repr, batchDim, timeDim
if opt.reprLayer == 'cnn' or opt.reprLayer == 'cnn2' then
repr = cnnLayers:forward(input)
batchDim, timeDim = 2, 1
elseif opt.reprLayer == 'cnn1' then
repr = cnnLayers.modules[3]:forward(cnnLayers.modules[2]:forward(cnnLayers.modules[1]:forward(input)))
-- TODO define this somewhere else and don't hard code sizes
local reshapeRepr = nn.Sequential()
reshapeRepr:add(nn.View(32*61, -1):setNumInputDims(3)) -- batch size X 32*61 X convolved seq length
reshapeRepr:add(nn.Transpose({ 2, 3 }, { 1, 2 })) -- convolved seq length X batch size X 32*61
if opt.nGPU > 0 then reshapeRepr = reshapeRepr:cuda() end
repr = reshapeRepr:forward(repr)
batchDim, timeDim = 2, 1
elseif stringx.startswith(opt.reprLayer, 'rnn') then
repr = cnnLayers:forward(input)
if opt.reprLayer == 'rnn' or opt.reprLayer == 'rnn7' then
repr = rnnLayers:forward(repr) -- convolved seq length X batch size X 1760
else
local rnnLayerNum = tonumber(opt.reprLayer:sub(opt.reprLayer:len()))
assert(rnnLayerNum and rnnLayerNum > 0 and rnnLayerNum < 7, 'bad reprLayer ' .. opt.reprLayer .. '\n')
repr = rnnLayers.modules[1]:forward(repr) -- first rnn layer
for i = 1,rnnLayerNum - 1 do
repr = rnnLayers.modules[i*2]:forward(repr) -- batch norm layer
repr = rnnLayers.modules[i*2+1]:forward(repr) -- next rnn layer
end
end
batchDim, timeDim = 2, 1
elseif opt.reprLayer == 'input' then
repr = input:squeeze():transpose(2,3):transpose(1,2) -- convolved seq length X batch size X freq
batchDim, timeDim = 2, 1
else
error('unsupported representation ' .. opt.reprLayer)
end
-- iterate over batch dim
for k = 1, repr:size(batchDim) do
local predLabels, goldLabels = {}, {}
-- iterate over time
for t = 1, repr:size(timeDim) do
-- get label id corresponding to current frame; if frame is outside of transcript (because of padding), will return 0
local label = getFrameLabel(transcripts[k], times[k], t, opt.reprLayer, opt.convStep)
if opt.phoneClasses then
label = phone2class[label]
end
if label then
local target = label2idx[label]
local classifierInput = repr[t][k]
if opt.window > 0 then
classifierInput = getWindowedInput(opt.window, repr, t, k, timeDim)
end
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
local outputGrad = criterion:backward(classifierOut, target)
classifier:backward(classifierInput, outputGrad)
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
end
-- update confusion matrix
confusion:add(classifierOut, target)
end
end
if predFile then
predFile:writeString(stringx.join(' ', predLabels) .. '\n')
goldFile:writeString(stringx.join(' ', goldLabels) .. '\n')
transFile:writeString(transcripts[k] .. '\n')
end
end
classifierGrads:div(numPhonemes)
-- keep loss over entire training data
totalLoss = totalLoss + loss
numTotalPhonemes = numTotalPhonemes + numPhonemes
-- loss for current batch
loss = loss/numPhonemes
return loss, classifierGrads
end
optimMethod(evalLossGrad, classifierParams, optimState)
end
time = (sys.clock() - time) / dataSize
print('==> time to learn 1 sample = ' .. (time*1000) .. 'ms')
totalLoss = totalLoss/numTotalPhonemes
print('==> loss: ' .. totalLoss)
print(confusion)
print('==> total number of train phonemes (frames): ' .. numTotalPhonemes)
local accuracy = confusion.totalValid * 100
-- for next epoch
confusion:zero()
if predFile then predFile:close() end
if goldFile then goldFile:close() end
if transFile then transFile:close() end
return totalLoss, accuracy
end
function eval(allSpects, allTranscripts, allTimes, dataSize, epoch, opt, testOrVal, predFilename)
local testOrVal = testOrVal or 'test'
local predFile, goldFile, transFile, ctcPredFile
if predFilename then
predFile = torch.DiskFile(predFilename .. '.epoch' .. epoch, 'w')
goldFile = torch.DiskFile(predFilename .. '.gold', 'w')
transFile = torch.DiskFile(predFilename .. '.trans', 'w')
if opt.writeCTCPredictions then
ctcPredFile = torch.DiskFile(predFilename .. '.ctc.pred', 'w')
end
end
local time = sys.clock()
classifier:evaluate()
local shuffle = torch.range(1, dataSize) -- no need to shuffle on test TODO: clean this
local input = torch.Tensor()
if opt.nGPU > 0 then
input = input:cuda()
end
print('\n==> evaluating on ' .. testOrVal .. ' data')
print('\n==> epoch # ' .. epoch .. ' [batch size = ' .. opt.batchSize .. ']')
local totalLoss, numTotalPhonemes = 0, 0
for i = 1,dataSize,opt.batchSize do
collectgarbage()
xlua.progress(i, dataSize)
-- get next batch
local indices = shuffle[{ {i, math.min(i+opt.batchSize-1, dataSize) } }]
local inputsCPU, _, transcripts, times = nextBatch(indices, allSpects, allTranscripts, allTimes)
input:resize(inputsCPU:size()):copy(inputsCPU) -- batch size X 1 X freq X input seq length
local loss, numPhonemes = 0, 0
-- to compute the convolved seq length = ( ((input seq length - 11) / 2 + 1) - 11 ) / 2 + 1, or use the function calSize(input seq length)
local repr, batchDim, timeDim
if opt.reprLayer == 'cnn' or opt.reprLayer == 'cnn2' then
repr = cnnLayers:forward(input)
batchDim, timeDim = 2, 1
elseif opt.reprLayer == 'cnn1' then
repr = cnnLayers.modules[3]:forward(cnnLayers.modules[2]:forward(cnnLayers.modules[1]:forward(input)))
-- TODO define this somewhere else and don't hard code sizes
local reshapeRepr = nn.Sequential()
reshapeRepr:add(nn.View(32*61, -1):setNumInputDims(3)) -- batch size X 32*61 X convolved seq length
reshapeRepr:add(nn.Transpose({ 2, 3 }, { 1, 2 })) -- convolved seq length X batch size X 32*61
if opt.nGPU > 0 then reshapeRepr = reshapeRepr:cuda() end
repr = reshapeRepr:forward(repr)
batchDim, timeDim = 2, 1
elseif stringx.startswith(opt.reprLayer, 'rnn') then
repr = cnnLayers:forward(input)
if opt.reprLayer == 'rnn' or opt.reprLayer == 'rnn7' then
repr = rnnLayers:forward(repr) -- convolved seq length X batch size X 1760
else
local rnnLayerNum = tonumber(opt.reprLayer:sub(opt.reprLayer:len()))
assert(rnnLayerNum and rnnLayerNum > 0 and rnnLayerNum < 7, 'bad reprLayer ' .. opt.reprLayer .. '\n')
repr = rnnLayers.modules[1]:forward(repr) -- first rnn layer
for i = 1,rnnLayerNum - 1 do
repr = rnnLayers.modules[i*2]:forward(repr) -- batch norm layer
repr = rnnLayers.modules[i*2+1]:forward(repr) -- next rnn layer
end
end
batchDim, timeDim = 2, 1
elseif opt.reprLayer == 'input' then
repr = input:squeeze():transpose(2,3):transpose(1,2)
batchDim, timeDim = 2, 1
else
error('unsupported representation ' .. opt.reprLayer)
end
-- write CTC predictions (including blanks)
local ctcBatchPredictions
if opt.writeCTCPredictions and ctcPredFile then -- and opt.convStep == 1 then
ctcBatchPredictions = model:forward(input)
end
--[[
local size = ctcPredictions:size(1)
for j = 1, size do
local prediction = ctcPredictions[j]
local _, maxIndices = torch.max(prediction, 2)
maxIndices = maxIndices:float():squeeze()
local tokens = {}
for i=1, maxIndices:size(1) do
local token = maxIndices[i] - 1
table.insert(tokens, token)
end
--local predict_tokens = mapper:decodeOutput(prediction)
local predictTranscript = mapper:tokensToText(tokens)
ctcPredFile:writeString(predictTranscript .. '\n')
end
end
--]]
-- iterate over batch (TODO: vectorize this?)
for k = 1, repr:size(batchDim) do
-- ctc predictions for current uttterance
local ctcMaxIndices
if opt.writeCTCPredictions and ctcPredFile and ctcBatchPredictions then --and opt.convStep == 1 then
_, ctcMaxIndices = torch.max(ctcBatchPredictions[k], 2)
ctcMaxIndices = ctcMaxIndices:float():squeeze()
end
local predLabels, goldLabels, predCTCTokens = {}, {}, {}
-- iterate over time
for t = 1, repr:size(timeDim) do
-- get label id corresponding to current frame; if frame is outside of transcript (because of padding), will return 0
local label = getFrameLabel(transcripts[k], times[k], t, opt.reprLayer, opt.convStep)
if opt.phoneClasses then
label = phone2class[label]
end
if label then
local target = label2idx[label]
local classifierInput = repr[t][k]
if opt.window > 0 then
classifierInput = getWindowedInput(opt.window, repr, t, k, timeDim)
end
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
if opt.writeCTCPredictions and ctcPredFile and ctcMaxIndices then --and opt.convStep == 1 then
local token = ctcMaxIndices[t] - 1
table.insert(predCTCTokens, token)
end
end
-- update confusion matrix
confusion:add(classifierOut, target)
end
end
if predFile then
predFile:writeString(stringx.join(' ', predLabels) .. '\n')
goldFile:writeString(stringx.join(' ', goldLabels) .. '\n')
transFile:writeString(transcripts[k] .. '\n')
if ctcPredFile then
local predictTranscript = mapper:tokensToText(predCTCTokens)
--ctcPredFile:writeString(predictTranscript .. '\n')
ctcPredFile:writeString(stringx.join(' ', predCTCTokens) .. '\n')
end
end
end
classifierGrads:div(numPhonemes)
-- keep loss over entire training data
totalLoss = totalLoss + loss
numTotalPhonemes = numTotalPhonemes + numPhonemes
-- loss for current batch
loss = loss/numPhonemes
end
time = (sys.clock() - time) / dataSize
print('==> time to evaluate 1 sample = ' .. (time*1000) .. 'ms')
totalLoss = totalLoss/numTotalPhonemes
print('==> loss: ' .. totalLoss)
print(confusion)
print('==> total number of ' .. testOrVal .. ' phonemes (frames): ' .. numTotalPhonemes)
local accuracy = confusion.totalValid * 100
-- for next epoch
confusion:zero()
if predFile then predFile:close() end
if goldFile then goldFile:close() end
if transFile then transFile:close() end
if ctcPredFile then ctcPredFile:close() end
return totalLoss, accuracy
end
function trainAggregateFrames(allSpects, allTranscripts, allTimes, dataSize, epoch, opt, predFilename)
local time = sys.clock()
classifier:training()
local predFile, goldFile, transFile
if predFilename then
predFile = torch.DiskFile(predFilename .. '.epoch' .. epoch, 'w')
goldFile = torch.DiskFile(predFilename .. '.gold', 'w')
transFile = torch.DiskFile(predFilename .. '.trans', 'w')
end
local shuffle = torch.randperm(dataSize)
local input = torch.Tensor()
if opt.nGPU > 0 then
input = input:cuda()
end
print('\n==> doing epoch on training data:')
print('\n==> epoch # ' .. epoch .. ' [batch size = ' .. opt.batchSize .. ']')
local totalLoss, numTotalPhonemes = 0, 0
--for i = 1,100,opt.batchSize do
for i = 1,dataSize,opt.batchSize do
collectgarbage()
xlua.progress(i, dataSize)
-- get next batch
local indices = shuffle[{ {i, math.min(i+opt.batchSize-1, dataSize) } }]
local inputsCPU, _, transcripts, times = nextBatch(indices, allSpects, allTranscripts, allTimes)
input:resize(inputsCPU:size()):copy(inputsCPU) -- batch size X 1 X freq X input seq length
-- closure
local evalLossGrad = function(x)
-- get new params
if x ~= classifierParams then classifierParams:copy(x) end
-- reset gradients
classifierGrads:zero()
local loss, numPhonemes = 0, 0
local repr, batchDim, timeDim
if opt.reprLayer == 'cnn' or opt.reprLayer == 'cnn2' then
repr = cnnLayers:forward(input)
batchDim, timeDim = 2, 1
elseif opt.reprLayer == 'cnn1' then
repr = cnnLayers.modules[3]:forward(cnnLayers.modules[2]:forward(cnnLayers.modules[1]:forward(input)))
-- TODO define this somewhere else and don't hard code sizes
local reshapeRepr = nn.Sequential()
reshapeRepr:add(nn.View(32*61, -1):setNumInputDims(3)) -- batch size X 32*61 X convolved seq length
reshapeRepr:add(nn.Transpose({ 2, 3 }, { 1, 2 })) -- convolved seq length X batch size X 32*61
if opt.nGPU > 0 then reshapeRepr = reshapeRepr:cuda() end
repr = reshapeRepr:forward(repr)
batchDim, timeDim = 2, 1
elseif stringx.startswith(opt.reprLayer, 'rnn') then
repr = cnnLayers:forward(input)
if opt.reprLayer == 'rnn' or opt.reprLayer == 'rnn7' then
repr = rnnLayers:forward(repr) -- convolved seq length X batch size X 1760
else
local rnnLayerNum = tonumber(opt.reprLayer:sub(opt.reprLayer:len()))
assert(rnnLayerNum and rnnLayerNum > 0 and rnnLayerNum < 7, 'bad reprLayer ' .. opt.reprLayer .. '\n')
repr = rnnLayers.modules[1]:forward(repr) -- first rnn layer
for i = 1,rnnLayerNum - 1 do
repr = rnnLayers.modules[i*2]:forward(repr) -- batch norm layer
repr = rnnLayers.modules[i*2+1]:forward(repr) -- next rnn layer
end
end
batchDim, timeDim = 2, 1
elseif opt.reprLayer == 'input' then
repr = input:squeeze():transpose(2,3):transpose(1,2) -- convolved seq length X batch size X freq
batchDim, timeDim = 2, 1
else
error('unsupported representation ' .. opt.reprLayer)
end
-- iterate over batch dim
for k = 1, repr:size(batchDim) do
local predLabels, goldLabels = {}, {}
local prevTarget, curNumFrames, aggregateRepr = 0, 0, torch.zeros(repr[1][k]:nElement())
if opt.nGPU > 0 then aggregateRepr = aggregateRepr:cuda() end
-- iterate over time
for t = 1, repr:size(timeDim) do
-- get label id corresponding to current frame; if frame is outside of transcript (because of padding), will return 0
local label = getFrameLabel(transcripts[k], times[k], t, opt.reprLayer, opt.convStep)
--print('label:')
--print(label)
if opt.phoneClasses then
label = phone2class[label]
end
if label then
local target = label2idx[label]
-- aggregate frames
if opt.aggregateFrames then
if prevTarget > 0 then
if prevTarget == target then
-- aggregate frames
curNumFrames = curNumFrames + 1
aggregateRepr:add(repr[t][k])
else
-- found new phoneme; make a forward/backward step on previous one
-- input to classifier is average over frames
local classifierInput = aggregateRepr:div(curNumFrames)
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
local outputGrad = criterion:backward(classifierOut, target)
classifier:backward(classifierInput, outputGrad)
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
end
-- update confusion matrix
confusion:add(classifierOut, target)
-- init for next phoneme
curNumFrames = 1
aggregateRepr:copy(repr[t][k])
end
else
-- first frame in the utterance
curNumFrames = 1
aggregateRepr:copy(repr[t][k])
end
-- update previous target
prevTarget = target
-- clean last frame
if t == repr:size(timeDim) and curNumFrames > 0 then
local classifierInput = aggregateRepr:div(curNumFrames)
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
local outputGrad = criterion:backward(classifierOut, target)
classifier:backward(classifierInput, outputGrad)
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
end
-- update confusion matrix
confusion:add(classifierOut, target)
end
else
-- classify each frame, without aggregating
local classifierInput = repr[t][k]
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
local outputGrad = criterion:backward(classifierOut, target)
classifier:backward(classifierInput, outputGrad)
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
end
-- update confusion matrix
confusion:add(classifierOut, target)
end
elseif opt.aggregateFrames and curNumFrames > 0 then
-- if found invalid label (e.g. silence), and aggregating frames, and have some frames aggregated, make a forward/backword step
local target = prevTarget
local classifierInput = aggregateRepr:div(curNumFrames)
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
local outputGrad = criterion:backward(classifierOut, target)
classifier:backward(classifierInput, outputGrad)
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
end
-- update confusion matrix
confusion:add(classifierOut, target)
-- init for next phoneme
prevTarget, curNumFrames, aggregateRepr = 0, 0, torch.zeros(repr[1][k]:nElement())
if opt.nGPU > 0 then aggregateRepr = aggregateRepr:cuda() end
end
end
if predFile then
predFile:writeString(stringx.join(' ', predLabels) .. '\n')
goldFile:writeString(stringx.join(' ', goldLabels) .. '\n')
transFile:writeString(transcripts[k] .. '\n')
end
end
classifierGrads:div(numPhonemes)
-- keep loss over entire training data
totalLoss = totalLoss + loss
numTotalPhonemes = numTotalPhonemes + numPhonemes
-- loss for current batch
loss = loss/numPhonemes
return loss, classifierGrads
end
optimMethod(evalLossGrad, classifierParams, optimState)
end
time = (sys.clock() - time) / dataSize
print('==> time to learn 1 sample = ' .. (time*1000) .. 'ms')
totalLoss = totalLoss/numTotalPhonemes
print('==> loss: ' .. totalLoss)
print(confusion)
print('==> total number of train phonemes (frames): ' .. numTotalPhonemes)
local accuracy = confusion.totalValid * 100
-- for next epoch
confusion:zero()
if predFile then predFile:close() end
if goldFile then goldFile:close() end
if transFile then transFile:close() end
return totalLoss, accuracy
end
function evalAggregateFrames(allSpects, allTranscripts, allTimes, dataSize, epoch, opt, testOrVal, predFilename)
local testOrVal = testOrVal or 'test'
local predFile, goldFile, transFile
if predFilename then
predFile = torch.DiskFile(predFilename .. '.epoch' .. epoch, 'w')
goldFile = torch.DiskFile(predFilename .. '.gold', 'w')
transFile = torch.DiskFile(predFilename .. '.trans', 'w')
end
local time = sys.clock()
classifier:evaluate()
local shuffle = torch.range(1, dataSize) -- no need to shuffle on test TODO: clean this
local input = torch.Tensor()
if opt.nGPU > 0 then
input = input:cuda()
end
print('\n==> evaluating on ' .. testOrVal .. ' data')
print('\n==> epoch # ' .. epoch .. ' [batch size = ' .. opt.batchSize .. ']')
local totalLoss, numTotalPhonemes = 0, 0
for i = 1,dataSize,opt.batchSize do
collectgarbage()
xlua.progress(i, dataSize)
-- get next batch
local indices = shuffle[{ {i, math.min(i+opt.batchSize-1, dataSize) } }]
local inputsCPU, _, transcripts, times = nextBatch(indices, allSpects, allTranscripts, allTimes)
input:resize(inputsCPU:size()):copy(inputsCPU) -- batch size X 1 X freq X input seq length
local loss, numPhonemes = 0, 0
-- to compute the convolved seq length = ( ((input seq length - 11) / 2 + 1) - 11 ) / 2 + 1, or use the function calSize(input seq length)
local repr, batchDim, timeDim
if opt.reprLayer == 'cnn' or opt.reprLayer == 'cnn2' then
repr = cnnLayers:forward(input)
batchDim, timeDim = 2, 1
elseif opt.reprLayer == 'cnn1' then
repr = cnnLayers.modules[3]:forward(cnnLayers.modules[2]:forward(cnnLayers.modules[1]:forward(input)))
-- TODO define this somewhere else and don't hard code sizes
local reshapeRepr = nn.Sequential()
reshapeRepr:add(nn.View(32*61, -1):setNumInputDims(3)) -- batch size X 32*61 X convolved seq length
reshapeRepr:add(nn.Transpose({ 2, 3 }, { 1, 2 })) -- convolved seq length X batch size X 32*61
if opt.nGPU > 0 then reshapeRepr = reshapeRepr:cuda() end
repr = reshapeRepr:forward(repr)
batchDim, timeDim = 2, 1
elseif stringx.startswith(opt.reprLayer, 'rnn') then
repr = cnnLayers:forward(input)
if opt.reprLayer == 'rnn' or opt.reprLayer == 'rnn7' then
repr = rnnLayers:forward(repr) -- convolved seq length X batch size X 1760
else
local rnnLayerNum = tonumber(opt.reprLayer:sub(opt.reprLayer:len()))
assert(rnnLayerNum and rnnLayerNum > 0 and rnnLayerNum < 7, 'bad reprLayer ' .. opt.reprLayer .. '\n')
repr = rnnLayers.modules[1]:forward(repr) -- first rnn layer
for i = 1,rnnLayerNum - 1 do
repr = rnnLayers.modules[i*2]:forward(repr) -- batch norm layer
repr = rnnLayers.modules[i*2+1]:forward(repr) -- next rnn layer
end
end
batchDim, timeDim = 2, 1
elseif opt.reprLayer == 'input' then
repr = input:squeeze():transpose(2,3):transpose(1,2)
batchDim, timeDim = 2, 1
else
error('unsupported representation ' .. opt.reprLayer)
end
-- iterate over batch (TODO: can vectorize this?)
for k = 1, repr:size(batchDim) do
local predLabels, goldLabels = {}, {}
local prevTarget, curNumFrames, aggregateRepr = 0, 0, torch.zeros(repr[1][k]:nElement())
if opt.nGPU > 0 then aggregateRepr = aggregateRepr:cuda() end
-- iterate over time
for t = 1, repr:size(timeDim) do
-- get label id corresponding to current frame; if frame is outside of transcript (because of padding), will return 0
local label = getFrameLabel(transcripts[k], times[k], t, opt.reprLayer, opt.convStep)
if opt.phoneClasses then
label = phone2class[label]
end
if label then
local target = label2idx[label]
-- aggregate frames
if opt.aggregateFrames then
if prevTarget > 0 then
if prevTarget == target then
-- aggregate frames
curNumFrames = curNumFrames + 1
aggregateRepr:add(repr[t][k])
else
-- found new phoneme; make a forward/backward step on previous one
-- input to classifier is average over frames
local classifierInput = aggregateRepr:div(curNumFrames)
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
end
-- update confusion matrix
confusion:add(classifierOut, target)
-- init for next phoneme
curNumFrames = 1
aggregateRepr:copy(repr[t][k])
end
else
-- first frame in the utterance
curNumFrames = 1
aggregateRepr:copy(repr[t][k])
end
-- update previous target
prevTarget = target
-- clean last frame
if t == repr:size(timeDim) and curNumFrames > 0 then
local classifierInput = aggregateRepr:div(curNumFrames)
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
end
-- update confusion matrix
confusion:add(classifierOut, target)
end
else
local classifierInput = repr[t][k]
local classifierOut = classifier:forward(classifierInput)
loss = loss + criterion:forward(classifierOut, target)
numPhonemes = numPhonemes + 1
-- get predicted labels to write to file
if predFile then
local _, predIdx = classifierOut:max(1)
predIdx = predIdx:long()[1]
local predLabel = idx2label[predIdx]
table.insert(predLabels, predLabel)
table.insert(goldLabels, label)
end