-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBIRD.stan
47 lines (39 loc) · 1.42 KB
/
BIRD.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
functions {
// This function can be used via: p~betaModeConc(mode,concentration);
real betaModeConc_lpdf(real parm,real m,real c) {
return beta_lpdf(parm|m*(c-2)+1, (1-m)*(c-2)+1);
}
}
data {
int<lower=0> N_DNA; // number of DNA replicates
int<lower=0> a[N_DNA]; // DNA alt read counts
int<lower=0> b[N_DNA]; // DNA ref read counts
int<lower=0> N_RNA; // number of RNA replicates
int<lower=0> k[N_RNA]; // RNA alt read counts
int<lower=0> m[N_RNA]; // RNA ref read counts
}
parameters {
real<lower=0,upper=1> p; // alt allele freq in DNA library
real<lower=0,upper=1> qi[N_RNA]; // alt allele freqs in RNA reps
real<lower=0> theta; // effect size (odds ratio)
real<lower=2> c; // concentration parameter of beta prior for qi
real<lower=0> s; // variance parameter of lognormal prior for theta
}
transformed parameters {
real<lower=0,upper=1> q; // alt allele freq in RNA
q=theta*p/(1.0-p+theta*p);
}
model {
// Parameters:
c ~ gamma(1.1, 0.0005); // concentration parameter for prior on qi
s ~ gamma(1.1,3); // variance parameter for prior on theta
log(theta)/s ~ normal(0,1); // prior on theta
target+=-log(theta)-log(s); // Jacobian for lognormal theta prior
for(i in 1:N_RNA)
qi[i] ~ betaModeConc(q,c);
// Likelihoods:
for(i in 1:N_DNA)
a[i] ~ binomial(a[i]+b[i],p);
for(i in 1:N_RNA)
k[i] ~ binomial(k[i]+m[i],qi[i]);
}