-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
430 lines (337 loc) · 16.9 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
"""
neural network stuff, intended to be used with Lasagne
"""
import numpy as np
import theano as th
import theano.tensor as T
import lasagne
from lasagne.layers import dnn
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
from lasagne.layers import MergeLayer
# T.nnet.relu has some stability issues, this is better
from lasagne import init
from lasagne import nonlinearities
def relu(x):
return T.maximum(x, 0)
def lrelu(x, a=0.2):
return T.maximum(x, a*x)
def centered_softplus(x):
return T.nnet.softplus(x) - np.cast[th.config.floatX](np.log(2.))
def log_sum_exp(x, axis=1):
m = T.max(x, axis=axis)
return m+T.log(T.sum(T.exp(x-m.dimshuffle(0,'x')), axis=axis))
def adam_updates(params, cost, lr=0.001, mom1=0.9, mom2=0.999):
updates = []
grads = T.grad(cost, params)
t = th.shared(np.cast[th.config.floatX](1.))
for p, g in zip(params, grads):
v = th.shared(np.cast[th.config.floatX](p.get_value() * 0.))
mg = th.shared(np.cast[th.config.floatX](p.get_value() * 0.))
v_t = mom1*v + (1. - mom1)*g
mg_t = mom2*mg + (1. - mom2)*T.square(g)
v_hat = v_t / (1. - mom1 ** t)
mg_hat = mg_t / (1. - mom2 ** t)
g_t = v_hat / T.sqrt(mg_hat + 1e-8)
p_t = p - lr * g_t
updates.append((v, v_t))
updates.append((mg, mg_t))
updates.append((p, p_t))
updates.append((t, t+1))
return updates
class WeightNormLayer(lasagne.layers.Layer):
def __init__(self, incoming, b=lasagne.init.Constant(0.), g=lasagne.init.Constant(1.),
W=lasagne.init.Normal(0.05), train_g=False, init_stdv=1., nonlinearity=relu, **kwargs):
super(WeightNormLayer, self).__init__(incoming, **kwargs)
self.nonlinearity = nonlinearity
self.init_stdv = init_stdv
k = self.input_shape[1]
if b is not None:
self.b = self.add_param(b, (k,), name="b", regularizable=False)
if g is not None:
self.g = self.add_param(g, (k,), name="g", regularizable=False, trainable=train_g)
if len(self.input_shape)==4:
self.axes_to_sum = (0,2,3)
self.dimshuffle_args = ['x',0,'x','x']
else:
self.axes_to_sum = 0
self.dimshuffle_args = ['x',0]
# scale weights in layer below
incoming.W_param = incoming.W
#incoming.W_param.set_value(W.sample(incoming.W_param.get_value().shape))
if incoming.W_param.ndim==4:
if isinstance(incoming, Deconv2DLayer):
W_axes_to_sum = (0,2,3)
W_dimshuffle_args = ['x',0,'x','x']
else:
W_axes_to_sum = (1,2,3)
W_dimshuffle_args = [0,'x','x','x']
else:
W_axes_to_sum = 0
W_dimshuffle_args = ['x',0]
if g is not None:
incoming.W = incoming.W_param * (self.g/T.sqrt(1e-6 + T.sum(T.square(incoming.W_param),axis=W_axes_to_sum))).dimshuffle(*W_dimshuffle_args)
else:
incoming.W = incoming.W_param / T.sqrt(1e-6 + T.sum(T.square(incoming.W_param),axis=W_axes_to_sum,keepdims=True))
def get_output_for(self, input, init=False, **kwargs):
if init:
m = T.mean(input, self.axes_to_sum)
input -= m.dimshuffle(*self.dimshuffle_args)
inv_stdv = self.init_stdv/T.sqrt(T.mean(T.square(input), self.axes_to_sum))
input *= inv_stdv.dimshuffle(*self.dimshuffle_args)
self.init_updates = [(self.b, -m*inv_stdv), (self.g, self.g*inv_stdv)]
elif hasattr(self,'b'):
input += self.b.dimshuffle(*self.dimshuffle_args)
return self.nonlinearity(input)
def weight_norm(layer, **kwargs):
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = lasagne.nonlinearities.identity
if hasattr(layer, 'b'):
del layer.params[layer.b]
layer.b = None
return WeightNormLayer(layer, nonlinearity=nonlinearity, **kwargs)
class Deconv2DLayer(lasagne.layers.Layer):
def __init__(self, incoming, target_shape, filter_size, stride=(2, 2),
W=lasagne.init.Normal(0.05), b=lasagne.init.Constant(0.), nonlinearity=relu, **kwargs):
super(Deconv2DLayer, self).__init__(incoming, **kwargs)
self.target_shape = target_shape
self.nonlinearity = (lasagne.nonlinearities.identity if nonlinearity is None else nonlinearity)
self.filter_size = lasagne.layers.dnn.as_tuple(filter_size, 2)
self.stride = lasagne.layers.dnn.as_tuple(stride, 2)
self.target_shape = target_shape
self.W_shape = (incoming.output_shape[1], target_shape[1], filter_size[0], filter_size[1])
self.W = self.add_param(W, self.W_shape, name="W")
if b is not None:
self.b = self.add_param(b, (target_shape[1],), name="b")
else:
self.b = None
def get_output_for(self, input, **kwargs):
op = T.nnet.abstract_conv.AbstractConv2d_gradInputs(imshp=self.target_shape, kshp=self.W_shape, subsample=self.stride, border_mode='half')
activation = op(self.W, input, self.target_shape[2:])
if self.b is not None:
activation += self.b.dimshuffle('x', 0, 'x', 'x')
return self.nonlinearity(activation)
def get_output_shape_for(self, input_shape):
return self.target_shape
# minibatch discrimination layer
class MinibatchLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_kernels, dim_per_kernel=5, theta=lasagne.init.Normal(0.05),
log_weight_scale=lasagne.init.Constant(0.), b=lasagne.init.Constant(-1.), **kwargs):
super(MinibatchLayer, self).__init__(incoming, **kwargs)
self.num_kernels = num_kernels
num_inputs = int(np.prod(self.input_shape[1:]))
self.theta = self.add_param(theta, (num_inputs, num_kernels, dim_per_kernel), name="theta")
self.log_weight_scale = self.add_param(log_weight_scale, (num_kernels, dim_per_kernel), name="log_weight_scale")
self.W = self.theta * (T.exp(self.log_weight_scale)/T.sqrt(T.sum(T.square(self.theta),axis=0))).dimshuffle('x',0,1)
self.b = self.add_param(b, (num_kernels,), name="b")
def get_output_shape_for(self, input_shape):
return (input_shape[0], np.prod(input_shape[1:])+self.num_kernels)
def get_output_for(self, input, init=False, **kwargs):
if input.ndim > 2:
# if the input has more than two dimensions, flatten it into a
# batch of feature vectors.
input = input.flatten(2)
activation = T.tensordot(input, self.W, [[1], [0]])
abs_dif = (T.sum(abs(activation.dimshuffle(0,1,2,'x') - activation.dimshuffle('x',1,2,0)),axis=2)
+ 1e6 * T.eye(input.shape[0]).dimshuffle(0,'x',1))
if init:
mean_min_abs_dif = 0.5 * T.mean(T.min(abs_dif, axis=2),axis=0)
abs_dif /= mean_min_abs_dif.dimshuffle('x',0,'x')
self.init_updates = [(self.log_weight_scale, self.log_weight_scale-T.log(mean_min_abs_dif).dimshuffle(0,'x'))]
f = T.sum(T.exp(-abs_dif),axis=2)
if init:
mf = T.mean(f,axis=0)
f -= mf.dimshuffle('x',0)
self.init_updates.append((self.b, -mf))
else:
f += self.b.dimshuffle('x',0)
return T.concatenate([input, f], axis=1)
class BatchNormLayer(lasagne.layers.Layer):
def __init__(self, incoming, b=lasagne.init.Constant(0.), g=lasagne.init.Constant(1.), nonlinearity=relu, **kwargs):
super(BatchNormLayer, self).__init__(incoming, **kwargs)
self.nonlinearity = nonlinearity
k = self.input_shape[1]
if b is not None:
self.b = self.add_param(b, (k,), name="b", regularizable=False)
if g is not None:
self.g = self.add_param(g, (k,), name="g", regularizable=False)
self.avg_batch_mean = self.add_param(lasagne.init.Constant(0.), (k,), name="avg_batch_mean", regularizable=False, trainable=False)
self.avg_batch_var = self.add_param(lasagne.init.Constant(1.), (k,), name="avg_batch_var", regularizable=False, trainable=False)
if len(self.input_shape)==4:
self.axes_to_sum = (0,2,3)
self.dimshuffle_args = ['x',0,'x','x']
else:
self.axes_to_sum = 0
self.dimshuffle_args = ['x',0]
def get_output_for(self, input, deterministic=False, **kwargs):
if deterministic:
norm_features = (input-self.avg_batch_mean.dimshuffle(*self.dimshuffle_args)) / T.sqrt(1e-6 + self.avg_batch_var).dimshuffle(*self.dimshuffle_args)
else:
batch_mean = T.mean(input,axis=self.axes_to_sum).flatten()
centered_input = input-batch_mean.dimshuffle(*self.dimshuffle_args)
batch_var = T.mean(T.square(centered_input),axis=self.axes_to_sum).flatten()
batch_stdv = T.sqrt(1e-6 + batch_var)
norm_features = centered_input / batch_stdv.dimshuffle(*self.dimshuffle_args)
# BN updates
new_m = 0.9*self.avg_batch_mean + 0.1*batch_mean
new_v = 0.9*self.avg_batch_var + T.cast((0.1*input.shape[0])/(input.shape[0]-1),th.config.floatX)*batch_var
self.bn_updates = [(self.avg_batch_mean, new_m), (self.avg_batch_var, new_v)]
if hasattr(self, 'g'):
activation = norm_features*self.g.dimshuffle(*self.dimshuffle_args)
else:
activation = norm_features
if hasattr(self, 'b'):
activation += self.b.dimshuffle(*self.dimshuffle_args)
return self.nonlinearity(activation)
def batch_norm(layer, b=lasagne.init.Constant(0.), g=lasagne.init.Constant(1.), **kwargs):
"""
adapted from https://gist.github.com/f0k/f1a6bd3c8585c400c190
"""
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = lasagne.nonlinearities.identity
else:
nonlinearity = lasagne.nonlinearities.identity
if hasattr(layer, 'b'):
del layer.params[layer.b]
layer.b = None
return BatchNormLayer(layer, b, g, nonlinearity=nonlinearity, **kwargs)
class GaussianNoiseLayer(lasagne.layers.Layer):
def __init__(self, incoming, sigma=0.1, **kwargs):
super(GaussianNoiseLayer, self).__init__(incoming, **kwargs)
self._srng = RandomStreams(lasagne.random.get_rng().randint(1, 2147462579))
self.sigma = sigma
def get_output_for(self, input, deterministic=False, use_last_noise=False, **kwargs):
if deterministic or self.sigma == 0:
return input
else:
if not use_last_noise:
self.noise = self._srng.normal(input.shape, avg=0.0, std=self.sigma)
return input + self.noise
# /////////// older code used for MNIST ////////////
# weight normalization
def l2normalize(layer, train_scale=True):
W_param = layer.W
s = W_param.get_value().shape
if len(s)==4:
axes_to_sum = (1,2,3)
dimshuffle_args = [0,'x','x','x']
k = s[0]
else:
axes_to_sum = 0
dimshuffle_args = ['x',0]
k = s[1]
layer.W_scale = layer.add_param(lasagne.init.Constant(1.),
(k,), name="W_scale", trainable=train_scale, regularizable=False)
layer.W = W_param * (layer.W_scale/T.sqrt(1e-6 + T.sum(T.square(W_param),axis=axes_to_sum))).dimshuffle(*dimshuffle_args)
return layer
## added class
#z_hat = nn.DenoiseLayer(u_net=u, z_net=z_c)
class DotLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_units, W=lasagne.init.Normal(0.01), **kwargs):
super(DotLayer, self).__init__(incoming, **kwargs)
num_inputs = self.input_shape[1]
self.num_units = num_units
self.W = self.add_param(W, (num_inputs, num_units), name='W')
def get_output_for(self, input, **kwargs):
return T.dot(input, self.W)
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.num_units)
class DenoiseLayer(MergeLayer):
"""
Special purpose layer used to construct the ladder network
See the ladder_network example.
"""
def __init__(self, u_net, z_net,
nonlinearity=lasagne.nonlinearities.sigmoid, **kwargs):
super(DenoiseLayer, self).__init__([u_net, z_net], **kwargs)
u_shp, z_shp = self.input_shapes
#self.num_inputs = z_shp[-1]
self.nonlinearity = nonlinearity
#constant = init.Constant
self.a1 = self.add_param(0., (10,10))
self.a2 = self.add_param(1., (10,10))
self.a3 = self.add_param(0., (10,10))
self.a4 = self.add_param(0., (10,10))
self.c1 = self.add_param(0., (10,10))
self.c2 = self.add_param(1., (10,10))
self.c3 = self.add_param(0., (10,10))
self.c4 = self.add_param(0., (10,10))
self.b1 = self.add_param(0., (10,10),
regularizable=False)
def get_output_shape_for(self, input_shapes):
output_shape = list(input_shapes[0]) # make a mutable copy
return tuple(output_shape)
def get_output_for(self, inputs, **kwargs):
u, z_lat = u_net, z_net
sigval = self.c1 + self.c2*z_lat
sigval += self.c3*u + self.c4*z_lat*u
sigval = self.nonlinearity(sigval)
z_est = self.a1 + self.a2 * z_lat + self.b1*sigval
z_est += self.a3*u + self.a4*z_lat*u
return z_est
class DenoiseLayer3(MergeLayer):
"""
Special purpose layer used to construct the ladder network
See the ladder_network example.
"""
def __init__(self, u_net, z_net,
nonlinearity=nonlinearities.sigmoid, **kwargs):
super(DenoiseLayer3, self).__init__([u_net, z_net], **kwargs)
u_shp, z_shp = self.input_shapes
if not u_shp[-1] == z_shp[-1]:
raise ValueError("last dimension of u and z must be equal"
" u was %s, z was %s" % (str(u_shp), str(z_shp)))
self.num_inputs = z_shp[-1]
self.nonlinearity = nonlinearity
constant = init.Constant
self.a1 = self.add_param(constant(0.), (self.num_inputs,), name="a1")
self.a2 = self.add_param(constant(1.), (self.num_inputs,), name="a2")
self.a3 = self.add_param(constant(0.), (self.num_inputs,), name="a3")
self.a4 = self.add_param(constant(0.), (self.num_inputs,), name="a4")
self.c1 = self.add_param(constant(0.), (self.num_inputs,), name="c1")
self.c2 = self.add_param(constant(1.), (self.num_inputs,), name="c2")
self.c3 = self.add_param(constant(0.), (self.num_inputs,), name="c3")
self.c4 = self.add_param(constant(0.), (self.num_inputs,), name="c4")
self.b1 = self.add_param(constant(0.), (self.num_inputs,),
name="b1", regularizable=False)
def get_output_shape_for(self, input_shapes):
output_shape = list(input_shapes[0]) # make a mutable copy
return tuple(output_shape)
def get_output_for(self, inputs, **kwargs):
u, z_lat = inputs
sigval = self.c1 + self.c2*z_lat
sigval += self.c3*u + self.c4*z_lat*u
sigval = self.nonlinearity(sigval)
z_est = self.a1 + self.a2 * z_lat + self.b1*sigval
z_est += self.a3*u + self.a4*z_lat*u
return z_est
# fully connected layer with weight normalization
class DenseLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_units, theta=lasagne.init.Normal(0.1), b=lasagne.init.Constant(0.),
weight_scale=lasagne.init.Constant(1.), train_scale=False, nonlinearity=relu, **kwargs):
super(DenseLayer, self).__init__(incoming, **kwargs)
self.nonlinearity = (lasagne.nonlinearities.identity if nonlinearity is None else nonlinearity)
self.num_units = num_units
num_inputs = int(np.prod(self.input_shape[1:]))
self.theta = self.add_param(theta, (num_inputs, num_units), name="theta")
self.weight_scale = self.add_param(weight_scale, (num_units,), name="weight_scale", trainable=train_scale)
self.W = self.theta * (self.weight_scale/T.sqrt(T.sum(T.square(self.theta),axis=0))).dimshuffle('x',0)
self.b = self.add_param(b, (num_units,), name="b")
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.num_units)
def get_output_for(self, input, init=False, deterministic=False, **kwargs):
if input.ndim > 2:
# if the input has more than two dimensions, flatten it into a
# batch of feature vectors.
input = input.flatten(2)
activation = T.dot(input, self.W)
if init:
ma = T.mean(activation, axis=0)
activation -= ma.dimshuffle('x',0)
stdv = T.sqrt(T.mean(T.square(activation),axis=0))
activation /= stdv.dimshuffle('x',0)
self.init_updates = [(self.weight_scale, self.weight_scale/stdv), (self.b, -ma/stdv)]
else:
activation += self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)