From 6131d4c2c76d75f1f0abcf50907c0d27c473202c Mon Sep 17 00:00:00 2001
From: gk552 <104007378+gk552@users.noreply.github.com>
Date: Sat, 4 Jun 2022 00:38:03 +0530
Subject: [PATCH] Add files via upload
---
Anaconda.md | 47 +++
Jupyter Notebook.ipynb | 84 +++++
Metplotlib.ipynb | 219 +++++++++++
Numpy Notebook.ipynb | 544 +++++++++++++++++++++++++++
Pandas Notebook.ipynb | 826 +++++++++++++++++++++++++++++++++++++++++
5 files changed, 1720 insertions(+)
create mode 100644 Anaconda.md
create mode 100644 Jupyter Notebook.ipynb
create mode 100644 Metplotlib.ipynb
create mode 100644 Numpy Notebook.ipynb
create mode 100644 Pandas Notebook.ipynb
diff --git a/Anaconda.md b/Anaconda.md
new file mode 100644
index 0000000..7fc8fb1
--- /dev/null
+++ b/Anaconda.md
@@ -0,0 +1,47 @@
+
+# Anaconda
+
+# What is Anaconda?
+Anaconda is an open source handy toolkit for dvelopers. It makes job easy for the developers by enabling them to create specific Working Environments and work in them.
+
+
+ ## But What Is Working Environment?
+ Let's understand this with an easy example. Let's say you are designing a house. Every room has its Environment, and according to the nature of that Environment, we add different items to that room. For example, In Kitchen, we will install a sink and gas stove and additional shelves for utensils and vegetables; just like this, we will install different items in our bedroom and living room.
+Now think of this as a developer. A developer is working on various projects simultaneously, and they'll need different packages for different projects. With the help of Anaconda, they can create different **Working Environments** with these different packages that they can access anytime. They'll not have to install these packages every time they switch from one project to another; instead, they switch from one Environment to the other, and they will easily have access to all these packages.
+They can also modify these **Working Environments** by adding, removing, or updating any package anytime.
+
+---
+
+# Installing Anaconda.
+
+* Search **Anaconda Install** in your Web Browser.
+* Click on Anaconda Distribution link that appears.
+* A download option appears on the right part of your screen. Click on download button and wait till it downloads.
+* Click on the exectable file which is downloaded and follow simple steps that will follow on screen. Just make sure about the following:
+ + While installing select Install for **Just Me** option.
+ + Select **Add Anaconda to my PATH environment variable**.
++ Now wait till it installs and then we can work with Anaconda Prompt.
+---
+# Working in an Environment in Anaconda
+## Creating an Environment
+Open the Anaconda command prompt. You'll be direct to a base environment in Anaconda.
+To setup a new Environment, type **"conda create -- name NAME python version"** (without inverted commas)
+Here, NAME is the name of the environment you want to create and Python version will specify which version of pyhton you want to work with in this environment.
+*for example:* ***conda create --name basisoflearning python=3.9*** will create an environment named 'basisoflearning' which will work with python 3.9
+### To enter the environment,
+type ***conda activate basisoflearning*** and you'll enter basisoflearning environment.
+### To install any package in the Environment,
+we will have to give different commands to download different packages in Anaconda which are easily available on the web.
+*for example :* to install NumPy we can give command ***conda instll -c anaconda numpy***. this will install numpy i the environment.
+
+### To exit the environment,
+type ***conda deactivate*** and you'll head out of that environment.
+
+---
+
+## Other Important Commands Examples.
+
+
+* ***conda list*** command fetches us list of all the packages installed in the environment.
+* ***conda update numpy*** will update numpy library to its latest version.
+* ***conda env list*** gives list of all the environments created on the system.
\ No newline at end of file
diff --git a/Jupyter Notebook.ipynb b/Jupyter Notebook.ipynb
new file mode 100644
index 0000000..e8d2031
--- /dev/null
+++ b/Jupyter Notebook.ipynb
@@ -0,0 +1,84 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "5e222e60",
+ "metadata": {},
+ "source": [
+ "# How to Install Jupyter Notebook?\n",
+ "* open command prompt.\n",
+ "* type **pip install jupyter** \n",
+ "This will install Jupyter in the system."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "780f90dd",
+ "metadata": {},
+ "source": [
+ "# Creating a Notebook\n",
+ "In command prompt type **jupyter notebook**. This will open jupyter notebook in the browser. \n",
+ "# Creating a Notebook\n",
+ "* Click on the New button (upper right).\n",
+ "* It will open up a list of choices. Choose the version of python you want to create the notebook in.\n",
+ "* It will open a new Jupyter Notebook in the browser.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c442f20a",
+ "metadata": {},
+ "source": [
+ "# Cells \n",
+ "cells in jupyter notebook are used to excute chuks of code by default but we can cahneg the celltype to markdown or raw NB converter according to our need. These cells will execute only the code written in them on clicking on Run button in the taskbar or pressing **Shift + Enter**. *for example:*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "e8c00aa2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Basis Of Learning\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Basis Of Learning\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a0683d7d",
+ "metadata": {},
+ "source": [
+ "These Cells get excuted in a specific sequence whic is usually mentioned in front of them. We can change the sequence in which they will be executed, Add as many ceels as required and Delete cells."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Metplotlib.ipynb b/Metplotlib.ipynb
new file mode 100644
index 0000000..9b1c872
--- /dev/null
+++ b/Metplotlib.ipynb
@@ -0,0 +1,219 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "3f6185f4",
+ "metadata": {},
+ "source": [
+ "# Matplotlib"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9cf85aeb",
+ "metadata": {},
+ "source": [
+ "Matplotlib is a data visualization library. It helps to create visual reprenstation of data i.e. explain data through graphs, pie charts, scatters and histograms."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2c33ebd5",
+ "metadata": {},
+ "source": [
+ "### Visual Representation of data using Matplotlib."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "ca7e3a0e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline #enable the inline plotting, where the plots/graphs will be displayed just below the cell where your plotting commands are written.\n",
+ "from matplotlib import pyplot as plt #pyplot from matplotlib is responsible to create graphs."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "936f998d",
+ "metadata": {},
+ "source": [
+ "### Creating Plot using Matplotlib."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "f0985e66",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAs9UlEQVR4nO3dd1zVZRvH8c/NFhQV3CKC5saNW9Tc5t7lnjh6rKfxmE0r2z0NTXOAKzXTNLdpppYojkAr9wJxgrhxoIz7+eNH47FywDn8zrjer1cv5QDnd3WCbzcX9/W7ldYaIYQQ9sfF7AKEEEJkjwS4EELYKQlwIYSwUxLgQghhpyTAhRDCTrnl5sUKFSqkg4KCcvOSQghh92JjYy9orQvf/XiuBnhQUBAxMTG5eUkhhLB7SqmEv3tcWihCCGGnJMCFEMJOSYALIYSdkgAXQgg7JQEuhBB2SgJcCCHslAS4EELYKQnwh/HzQji42uwqhBB25NSlm0xYfYCrN9Ms/ty5Oshj1zIzYfcXcDIawp6DR18GF1ezqxJC2KjdJy8TGRXHun2JuChFgzL+tKxc1KLXkAB/UC4u0H8ZfPsfiPoIzu6B7jPB28/syoQQNiIjU7PhQBIRUXHEJlzG18uN8CZlGdQwiGL5vSx+PQnwh+HuBZ0+g5K1Ye1/YEZT6DUPStQwuzIhhIlu3klnSexpZm6NJ+HiTUr55WF8x8r0Ci2Fj6f1YlYCPDtqD4KiVWFxf5jVBjp8AjX6mF2VECKXnb+WytztJ1iw8yRXbqZRM7AAL7StSJsqxXB1UVa/vgR4dgXUhhFbYMlgWD4KTsdA2/fAzcPsyoQQVnY4MYWIqDhW/nyWtMxM2lQuxvAmwdQunbstVQnwnPApBP2WwcY3IHoSJO6FXnPBt4TZlQkhLExrTdTRC0RExRF19AJ53F15om4phjQOprS/jyk1SYDnlKsbtJ4AJWvB8idhehPoOReCGpldmRDCAu6kZ7Lyl7NERsVxKDGFwvk8+U+bCvStF0gBb3N/4pYAt5QqXaFwJVjUF+Z2hNZvQf1RoKzfBxNCWN6Vm3dYsPMkc6NPcD7lNhWK5uPDHtXoVKMEnm62sYVYAtySilSE4ZuNnvj6F+FMLHSaBB7m/HglhHh4CRdvMGtrPItjTnMrLYOwcoX4b8/qhJUrhLKxBZkEuKV5+RpbC7d9AhsnwPkD0Hs++Jc1uzIhxD3EJlwiYks86w8k4uai6FyjJMPCgqlYzNfs0v6RBLg1uLgY05rFa8DSoTDjUeg2Ayq0NbsyIcSfZGRqvtufSERUHLtPXiF/HndGNS3LwIZBFPW1/OCNpUmAW9MjLSD8R2O/+MLe0PQFaDrOCHghhGlu3E7n65hTzNp2gpOXbhLo580bnarQMzQAbw/7icX7VqqUmgV0AM5rrUPuet/zwIdAYa31BeuUaOcKloYh62HNc/Dj+8YIfrcZkKeg2ZUJ4XSSrqUyJ/oEC3YkcC01ndqlC/LSYxVpVTl3Bm8s7UH+VzMHmAx88ecHlVKlgFbAScuX5WDc80DnKcYI/rcvwIxmRl+8WFWzKxPCKRw8d42IqDhW/XKWjExN25BiDAsrQ61A+15I3TfAtdZblFJBf/OuT4CxwApLF+WQlII6Q6FYNaOlEtkKOk6E6r3NrkwIh6S1ZsvRC0RmDd54e7jSt15phjQKJtDf2+zyLCJbzR6lVCfgjNb6l/ttq1FKhQPhAIGBgdm5nGMpVccYwf96ECwLN7YatnkbXN3NrkwIh3A7PYMVP59lZlQ8h5NSKOrrydi2FehbtzT5vR3r++yhA1wp5Q28DLR+kI/XWs8AZgCEhobqh72eQ8pbBAasgA3jYccUSPwVes6BfMXMrkwIu3X5xh0W7Exg7vYEklNuU7FYPj7qWZ2O1Uvg4eaYGweyswIvCwQDv62+A4DdSqm6WutESxbn0Fzdoe07xgj+yjHGCH6vLyCwvtmVCWFXTly4wcyt8Xwde4rUtEyali/M8F5laPSIv80N3ljaQwe41novUOS3t5VSJ4BQ2YWSTVV7QJFKsKgfzGkPbd6FusNlBF+Ie9BaE5twmRlb4thwMAl3Fxc61yjBsLAyVCiWz+zycs2DbCNcCDQDCimlTgPjtdYzrV2YUylaxRjBXzbCOPHnTAx0+BQ8HOMXLUJYSnpGJuv3Gyfe/HzqCgW83Xmy2SMMaFiaIvlsf/DG0h5kF8oT93l/kMWqcWZ5CsDjCyHqv7D5HUg6AL3ngV+w2ZUJYbrrt9NZ/NMpZm2L5/TlWwT5ezOhcxW617avwRtLc95/c1vk4gJNx0KJmlkj+M2geySUa2V2ZUKYIvFqKrOj4/ly50lSUtOpE1SQVztUpmWlonY5eGNpEuC2qFwrYwR/UX9Y0BMefQnCnpcRfOE09p+9SmRUPKt+OUum1rQLKc6wsGBq2vngjaVJgNsqv2AY+h2s/jdsfhvO7Iau04xWixAOSGvND0eSidgSR/Txi/h4uNK/gTF4U8pPfh/0dyTAbZmHN3SdDiVDjfuLRzwKvRdA0cpmVyaExaSmZbDi5zNERsVz9Px1ivl6Ma5dRZ6oG0j+PI41eGNpEuC2TimoFw7Fq8HiARDZAjpPhpDuZlcmRI5cunGH+TsS+GL7CS5cv0Pl4r580rs67as67uCNpUmA24vA+sYI/uKBsGQInI6FVm/ICL6wO3HJ15m5NZ6lu0+TmpbJoxUKMzysDA3KOv7gjaVJgNuTfMVg4Cr47hVjBP/cL9BztjGaL4QN01qzK/4SEVHxbDxkDN50rWmceFOuqPMM3liaBLi9cfOAxz4wbk276mmY3tQYwS9Vx+zKhPiL9IxMvt2XSGRUHL+cvkpBb3fGPPoI/RsEUTifp9nl2T0JcHtVvbfxy8yv+sLsdtDufQgdIiP4wiZcv53OV7tOMnvbCc5cuUVwIR/e6hJC91oB5PGwjRPdHYEEuD0rVhXCf4BvwmHNs8atadt/ZBwgIYQJzl65xZzoEyzceZKU2+nUDfbj9U5VaFGxCC4yeGNxEuD2ztsP+iyGH98zjmxL2ge95hlHuQmRS/aduUpEVBxrfj2HBtqFFGN4WBmqlypgdmkOTQLcEbi4GNOaJWrCNyNgRlPoMQvKNje7MuHAMjM1mw+fJyIqjh1xl8jr6cbAhkEMbhREQEEZvMkNEuCOpEI7CN9s3Jp2fndo/go0flb64sKiUtMyWLbnDJFRcRxPvkHx/F689FhFHq8biK+XbGvNTRLgjsa/LAz73jgkYuObxgh+l6ng5Wt2ZcLOXbx+m3k7Epi3PYGLN+4QUtKXiY/X4LGqxXF3lcEbM0iAOyIPH+g+0xjB/+4ViGgOvedDkYpmVybs0PHk60RGxfPN7tPcTs+kRcUiDAsrQ/0yfjJ4YzIJcEelFDQYbYzgfz0oawR/ClTpYnZlwg5ordkZf4mILXFsPHQeDzcXutcqydDGwTxSRAZvbIUEuKMLapw1gj8Avh4IZ56CFuPBVf7Ti79Ky8hk7d5zREbFs/fMVfx8PHi6RTn6NyhNobwyeGNr5LvYGfiWgEFrYN2LED0Jzv0MPWaDTyGzKxM24lpqGot2nWL2tnjOXk2lTGEf3ulalW61SuLlLoM3tkoC3Fm4eUKHj40R/NXPGCP4vb8w3hZO68yVW8zeGs9XP53i+u106gX7MaFLCI9WkMEbeyAB7mxq9jUOUV7UH2a1hcf+C7UHml2VyGV7T2cN3uw9B0D7qsUZHlaGqgH5Ta5MPAwJcGdUogaM+NG4Le2qp4wR/Mc+NFbpwmFlZmo2HTIGb3bGG4M3QxoFMahRMCULyO0X7JEEuLPy9oN+S43j2qI+gsS90Hse5A8wuzJhYalpGSzdfZqZW+OJS75ByQJ5eKV9JXrXKUU+Gbyxa/cNcKXULKADcF5rHZL12IdAR+AOcBwYrLW+YsU6hTW4uEKL16BELVg2EqY3MX65Waap2ZUJC7hw/TZfbE9g/o4ELt24Q7WA/Ex6oiaPhRTDTQZvHILSWt/7A5RqAlwHvvhTgLcGNmmt05VS7wNorV+438VCQ0N1TExMzqsWlnfhqDGCf+EItHwdGj4lI/h26tj5FGPwZs8Z7qRn0rJSEYaHlaFusAze2CulVKzWOvTux++7Atdab1FKBd312Hd/enMH0CPHFQpzFSpnjOCveBI2vGb0xTtPAU8Z2rAHWmu2x10kMiqeTYfO4+nmQo/aAQxtHEzZwnnNLk9YiSV64EOARf/0TqVUOBAOEBgYaIHLCavxzAc950L0Z/D9eDh/CB5fYIS7sElpGZms+fUcEVFx7D97DX8fD55pWZ5+9QPxl8Ebh3ffFgpA1gp89W8tlD89/jIQCnTTD/BE0kKxI3E/wpLBkH4Huk6FSh3Nrkj8ybXUNBbuPMmc6BOcu5rKI0XyMqxxMF1qyuCNI8p2C+UeTzgQ45ebLR4kvIWdKdPUGMFf1N/ojTd+1rg9rYuEg5lOXbrJ7G0nWPTTSW7cyaBBGX/e7hpCs/IyeOOMshXgSqm2wAtAU631TcuWJGxG/gAY/C18Oxa2fgxn9xgHRXj7mV2Z0/n51BUiouJYty8RBXSoVpxhYWUIKSmDN87sQbYRLgSaAYWUUqeB8cCLgCewIeu32ju01iOtWKcwi7sXdJpkjNyvfT5rBH+eMQwkrCozU/P9wSQio+LZdeIS+bzcGNY4mEGNgiieXwZvxAP2wC1FeuB27kwsLBoAN5KhwyfGWL6wuFt3Mliy+zSztsYTf8EYvBnSOJjedUqR11Nm75yRxXvgwgmVrJ01gj8YVow2Ar3te+DmYXZlDiE55TZfbD/B/B0JXL6ZRvWA/EzuU5O2VWTwRvw9CXDxcHwKQb9lsOlN2DYREn+FXl8Yt6wV2XIkKYXIqDiW7zlLWmYmLSsVZXhYGeoEFZTBG3FPEuDi4bm6Qas3jRH8FU8aI/g95xiHR4gHorUm+vhFIqLi+OFwMl7uLvSqE8DQxmUILuRjdnnCTkiAi+yr0gUKV4RFfWFuJ2g9AeqPlhH8e7iTnsnqX88SERXPwXPXKJTXk+daladv/dL4+UgrSjwcCXCRM0UqwvDNsHwUrH/J6It3+sw4WFn87uqtNL7ceZI50fEkXbtNuSJ5+aB7NTrVKCGDNyLbJMBFznn5Gqfeb/0ENk2A8weNt/3Lml2Z6U5dusnMrfEsjjnFzTsZNHrEn/e7V6Np+cLS3xY5JgEuLEMpCHvW2B++ZCjMeBS6zYAKbc2uzBR7Tl7+ffDGRSk6VS/B0LBgqpSQwRthORLgwrLKNje2Gi7qBwt7Q5Ox0GycU4zgZ2RqNhxIIjIqjpiEy/h6uRHepCyDGgZRLL+X2eUJByQBLiyvQCAMWQ9rnoMtHxgj+N1mOPQI/pYjyby6Yh8JF29Syi8P4ztWpldoKXxk8EZYkXx1Cetwz2PcT7xkbfj2BZjRzOiLF69mdmUWtyT2NC8s/ZUyhXyY0qcWbaoUlcEbkSvkq0xYj1JQZ6hxQ6yMNJjZCn75x1vH2x2tNVN/OM7zX/9C/TJ+fDO6Ie2rFZfwFrlGvtKE9ZWqY/TFS4bCsnBYO9a4z7gdy8zUvLHqAO+vO0Sn6iWYPaiuHBAscp0EuMgdeYvAgOXQ4F+wazrM7QgpiWZXlS230zMY89Ue5kSfYGjjYD7tXQMPN/lWErlPvupE7nF1hzZvG/cUT/zVGMFP2G52VQ/lWmoag2b9xJpfz/HyY5V4tUNlOUhBmEYCXOS+kO4wbKMxrTm3A+ycDnZwqNP5a6n0nr6Dn05c4pPe1RnepIzZJQknJwEuzFG0sjGC/0gr48SfZSPgju0e7nQ8+TpdP48m4eINZg2qQ9eaAWaXJIQEuDBRngLw+Jfw6Cvw62KY2RouxZtd1V/sOXmZHlOjSU3L4Kvw+jQpX9jskoQAJMCF2VxcoOl/oO/XcPUUzGgKRzeYXdXvNh1Kok/ETvJ5ubN0VEOqBRQwuyQhficBLmxDuVYQ/gPkD4QFPeGH9yEz09SSFsecYvgXsZQt4sPSUQ0Jkvt0CxsjAS5sh18wDP0OqvWGH96Br56AW1dyvQytNVM2H2Pskl9pWNafr8IbUDifZ67XIcT9SIAL2+LhDV2nQbsP4dj3EPEoJO3PtctnZGpeX7mfD9cfpnONEswcWEcOEhY2674BrpSapZQ6r5Ta96fH/JRSG5RSR7P+LGjdMoVTUQrqhcOgNcbOlMiWsHeJ1S+bmpbBmIW7mbs9geFhwXzSSwZ0hG17kK/OOcDdN3UeB2zUWpcDNma9LYRlBdY3RvCLV4elQ2HdS8Y9VazgWmoag2bvYu3eRF5+rBIvt5cBHWH77hvgWustwKW7Hu4MzM36+1ygi2XLEiJLvmIwcBXUGwk7psAXneH6eYteIulaKr2mbSc24TITH68hAzrCbmT358OiWutzAFl/FvmnD1RKhSulYpRSMcnJydm8nHBqru7Q7n3oFgFndhsj+Kd+sshTHzt/nW6fR3Pq0k1mDapD5xolLfK8QuQGqzf4tNYztNahWuvQwoVlAELkQLVeMGwDuHnC7HbwU2SORvB3n7xMj2nR3E7PYNGIBoSVk69PYV+yG+BJSqniAFl/WvZnWiH+SbGqxn7xso8aJ/4sHw1ptx76aTYeTKJPxA4K5DEGdEJKylmVwv5kN8BXAgOz/j4QWGGZcoR4AHkKwhOLoOk4+OVLYwT/csIDf/rin04RPi+WckXysWRUQ0r7y4COsE8Pso1wIbAdqKCUOq2UGgq8B7RSSh0FWmW9LUTucXGBR180gvxygjGCf2zjPT9Fa83kTUcZu/S3AZ36FMorAzrCfimdi7fxDA0N1TExMbl2PeEkLh6HRf3g/EFo/go0ftYI+D/5bUBn3o4EutYsyfvdq8keb2E3lFKxWuvQux+Xr2Bh//zLwrDvjfuMb5oAi/tD6rXf352alsGTC3Yzb0cCI5qU4aOe1SW8hUOQr2LhGDx8oHsktHkXDn9rjOCfP8TVW2kMmLWLdfsTeaV9JV58rJIM6AiHITd5EI5DKWgw2pjc/HoQmRGP8pn7GPZcrcGkJ2rSqXoJsysUwqJkBS4cT1Aj4ruv4UB6AK/cfJ8fqm2kU8g/zpoJYbckwIXDiU24RJd5Jxjm8iYXKw+g5MFImNcFblwwuzQhLEoCXDiU7w8k0TdyJ34+Hiwe3RT/Xp9Bl6lw+idjBP90rNklCmExEuDCYXy16yTh82KoUDQfS0Y2INDf23hHjT7GQREurjC7LcTOMbVOISxFAlzYPa01kzYeZdw3ewkrV5gvh9fH/+4BneLVIfxHCGoMq56GlWMgLdWcgoWwEAlwYdcyMjWvLN/HxxuO0K1WSSIHhuLzTyfoePtB3yUQ9hzs/sJYjV85lbsFC2FBEuDCbqWmZTB6QSwLdp5kZNOyfNSzOu6u9/mSdnGFFq/B41/ChWPGCH7cD7lSrxCWJgEu7NLVm2kMmLmL7w4k8VqHyoxrVxGlHmJAp2J7CN8MPoVhXlfYNjFHt6YVwgwS4MLunLt6i57To/n51BUmPV6TIY2Ds/dEhcrBsI1QqRNseA2+Hgi3UyxbrBBWJAEu7MrRpBS6fR7N2SupzBlch445na70zAs950Drt+DgKohoAclHLFKrENYmAS7sRsyJS/SYtp30TM2iEfVp+EghyzyxUtBwDAxYATcvQkRzI8yFsHES4MIufLc/8fcBnW9GNaRKCSucoBPcBEb8CIXLG7en/f51yMyw/HWEsBAJcGHzvtx5kpHzY6lY3JclIxtQys/behfLHwCDv4Xag2DrJzC/O9y4aL3rCZEDEuDCZmmt+fT7I7y0bC9Nyhdm4fB6fx3QsQY3T+g4ETp9BgnRMKMZnN1j/esK8ZAkwIVNysjUvLx8H59+f5QetQOIGBCKt0cu3/241gAYsg50JsxsA3vm5+71hbgPCXBhc1LTMhg1P5Yvd55kdLOyfNij2v0HdKylZC2jLx5YH1Y8CaufgfTb5tQixF0kwIVNuXLzDv0id7LhYBKvd6zM2LYPOaBjDT6FoN830OhpiJkFsx+Dq2fMrUkIJMCFDTl75RY9p23n19NXmfxELQY1yuaAjjW4ukGrN6HXF5B8yBjBj48yuyrh5CTAhU04kjWgk3g1lblD6tK+WnGzS/p7lTvD8E3gVQC+6Azbp8gIvjBNjgJcKfWMUmq/UmqfUmqhUsrLUoUJ57Er/hI9pkaTqTWLRjSgQVl/s0u6t8IVjBCv0A7WvwRLhsDt62ZXJZxQtgNcKVUSeAoI1VqHAK7A45YqTDiH9fsT6TdzJ4XyebJ0VEMql/A1u6QH4+ULvedDy9fhwHKIbAkXj5tdlXAyOW2huAF5lFJugDdwNuclCWcxf0cCo+bHUrm4L0tGNrTugI41KAWNn4F+S+F6EkxvatxnXFoqIpdkO8C11meA/wIngXPAVa31d3d/nFIqXCkVo5SKSU5Ozn6lwmForfl4wxFeWb6PZhWK8OXwevj5eJhdVvaVbW5sNSxRwzjp58tecE3WMsL6ctJCKQh0BoKBEoCPUqrf3R+ntZ6htQ7VWocWLlw4+5UKh5CekclLy/YyaeNRetYOYHr/2rk/oGMNBQJhwEpo94GxO+Xz+vDLV7IaF1aVkxZKSyBea52stU4DvgEaWqYs4Yhu3clg5PzdLNx1in89+ggfmDmgYw0uLlBvBIzaBoUrwbIR8FVfSEkyuzLhoHLy3XMSqK+U8lbGpEUL4KBlyhKO5srNO/SbuZONh5J4s3MVnm9TwfwBHWvxLwuD1xr3GD/2vbEa37fU7KqEA8pJD3wnsATYDezNeq4ZFqpLOJAzV27RY9p29p6+ypQ+tRjQIMjskqzPxdW4x/jIreAXbGw1XDwQblwwuzLhQJTOxR5daGiojomJybXrCfMdTkxh4Kxd3LiTTsSAUOqXsfE93taQkQ7RE2Hzu5CnAHT4BCp1NLsqYUeUUrFa69C7H3egBqSwNTvjLtJjWjQazdcjGzhneIMxhh/2nLFTJV9x47CIpcPh5iWzKxN2TgJcWMW6fefoP2sXRbIGdCoWs5MBHWsqWsWY4Gz2Iuz/Bj5vAEfWm12VsGMS4MLi5u1IYNSC3YSUMAZ0Agra2YCONbm6Q7NxMGwjePsbe8aXPwmpV82uTNghCXBhMVprPvruMK8u30fzCkVYMKw+Be15QMeaStSA8M0Q9jz8stBYjR/baHZVws5IgAuLSM/IZNzSvXy26Ri9Q0sxvX9t8ni4ml2WbXPzhBavwrAN4JEX5neDVf+G2ylmVybshAS4yLFbdzIYMS+WRTGneKr5I7zXvSpujjSgY20la8OILca2w9g5MLUhxG8xuyphB+S7TOTI5Rt36BO5g02HzzOhSwjPtnbgAR1rcvcyBn+GrAcXN5jbEdaOhTs3zK5M2DAJcJFtpy/fpPu0aPafvcbUvrXoX7+02SXZv8B6MHIb1BsJu6bDtMZwcofZVQkbJQEuHprWmnX7Eun2eTQXUm4zf2g92obY6Ak69sjDG9q9D4PWQGYGzGoL61+GtFtmVyZsjAS4eCjxF24wcPZPjJwfi5+PB1+PbEjdYD+zy3JMQY1hVDSEDobtk2F6Ezgtk8ziDw5wH0+RG27eSWfK5mNEbInH082F1zpUZkCD0vLLSmvzzPvH6P2KMTCzFTR62hgGcvM0uzphMglwcU9aa9bvT2TC6oOcuXKLbjVLMu6xihTJJ8ef5qqyzWF0tHEG59ZPjAnOLlON/eTCacnySfyjuOTrWe2S3eTzcmPxiAZ83LuGhLdZvPJD5ynQ52u4dRkimsPmdyD9jtmVCZPIClz8xd3tkvEdK9O/vrRLbEb51jB6O3z7Avz4PhxeC12mQbEQsysTuUwCXPzut3bJm6sOcPZqKt1qlWRcO2mX2KQ8BaHbDKjUCVb/G2Y0g2YvQKNnjLsfCqcg/6UFYLRLxq/cT9TRC1Qslo+JT9SkTpDsLrF5lTpAYANY+xxsegsOrYWu06BwBbMrE7lAAtzJ3byTzuRNx4iIisPLzZXXO1amn7RL7IuPP/ScY6zG1zwH08Kg+cvQ4F/GyUDCYUmAO6nfhnEmrDbaJd1rBTCuXUUK55OtaXYrpJuxd3z1M7DhNTi0xtip4l/W7MqElcgyywkdT77OgFm7GLVgN/m9PVgysgEf9aou4e0I8haB3vOhWwQkH4KpjWDHVMjMNLsyYQWyAnciN++k89mmY0RGxeHlLu0Sh6UUVOsFQWGw6ilYNw4OrobOk40DloXDkAB3Alprvs1ql5yTdonz8C0OfRbDzwtg3YvGarz1BAgdYoS8sHs5CnClVAEgEggBNDBEa73dAnUJCzl2/jqvr9zP1mMXqFTcl8+eqEmo7C5xHkpBzX4Q3BRWjoE1z8LBldBpMhQoZXZ1IodyugKfCKzTWvdQSnkAcvihjbhx22iXzNxqtEve6FSFvvUCpV3irAqUgv7LIHY2rH/FOMKt7TtQs7+sxu1YtgNcKeULNAEGAWit7wAy02syrTVr9yby1hqjXdKjdgAvtJV2icAI6tAhxn1VVvzLWJEfXAUdJ4JvCbOrE9mgtNbZ+0SlagAzgANAdSAWeFprfeOujwsHwgECAwNrJyQk5KRecQ9/bpdULu7LhC5VqF1a2iXib2Rmwk8RsGE8uHlAuw+gWm9ZjdsopVSs1jr0L4/nIMBDgR1AI631TqXUROCa1vrVf/qc0NBQHRMj9zO2tLvbJc+3riDtEvFgLh6H5aPg1E6o0B46fmpsRRQ25Z8CPCc98NPAaa31zqy3lwDjcvB84iH9XbtkXLuKFMor7RLxgPzLwuBvYcfnsHECTKkH7f8LId3Nrkw8gGwHuNY6USl1SilVQWt9GGiB0U4RueDY+euMX7mPbccuUrm4L5P71JR2icgeF1doOAbKtYZlI2HJEDiwEtp/bIzpC5uV010oY4AFWTtQ4oDBOS9J3MuN2+lM2nSUWVvj8XJ35c3OVehbrzSuLtK7FDlUuAIM3QDRE2Hzu5Cw7Y/TgIRNynYPPDukB559WmvW7D3HW6sPkngtlZ61A3hB2iXCWpL2G6vxxF+hai/jkGVv+QnPLNbogYtccux8CuNX7v+9XTKlby1qly5odlnCkRWtAsM3QdRHsOVDiN8CnSZB+TZmVyb+RALchv3WLpkZFY+3hysTOlehj7RLRG5xdYdm46B8W1g+Gr7sBTX6GQNAXvnNrk4gAW6T7m6X9AoNYGxbaZcIk5SoAeGbjePbtn4CcZuh02fwSAuzK3N6EuA25tj5FF5bsZ/o4xepUkLaJcJGuHlCi9eMveLLR8L8blB7sHFzLM98ZlfntCTAbcT12+l8tvEoM7dKu0TYsIDaMCIKNr8F0ZPh+EboPAWCm5hdmVOSADeZ1prVv57jrTUHSLp2m16hxr1L/KVdImyVuxe0fgsqdjCmOOd2hLojoOV48PAxuzqnIgFuoqNJxu6S39oln/etLe0SYT8C68PIbbDxDdg5DY5tMI5wC6xvdmVOQwLcBNdvpzNpozGM4+3hyoQuIfSpGyjtEmF/PLyNPeKVOho7VWa1hQZPQvNXwD2P2dU5PAnwXKS1ZtWv53g7q13SO7QUY9tWkHaJsH9BjWFUNGx4FbZPhqPfGavxgL/MnggLkgDPJUeTjN0l2+MuElLSl6n9alMrUNolwoF45v1j9H7FGJjZChr929hL7iaLFGuQALeyP7dLfDzdpF0iHF/Z5jA6Gta/BFs/hiPrjNV4iRpmV+ZwJMCt5O52yeN1SvGfNtIuEU7CK7+xvbBSJ1j5FES2gLDnIew54wAJYRES4FZwJCmF8Vntkqol8zOtX21qSrtEOKPybeDJHfDtC/Dje3B4DXSZBsVCzK7MIUiAW9D12+lM/P4Is7edwMfTjbe7hvB4HWmXCCeXpyB0m2Gsxlf/G2Y0g2YvQKNnwFUiKCfk1bMArTUrfznLO2sPcj7lt3ZJRfx85EdFIX5XqQMENoC1z8Gmt+DQWug6zbgPucgWCfAcOpKUwmsr9rEj7hLVAvIzvX8oNUoVMLssIWyTjz/0nGOsxtc8B9PCjD3jDZ40TgYSD0UCPJv+3C7J6yXtEiEeSkg3Y+/46meMveOHVhs7VfzLml2ZXZEAf0i/tUveXnOQ5OvSLhEi2/IWgd7zYe/XsPZ5mNoIWr4OdcPBxcXs6uyCBPhDOJKUwqvL97Ez3miXzBgg7RIhckQpqNYLgsJg1VOw7gU4uAo6Twa/YLOrs3kS4A8gJTWNid8fZXb0CfJ5ufFO16r0rlNK2iVCWIpvceizGH5eAOteNFbjrSdA6BAj5MXfkgC/h7+2SwIZ26YCBaVdIoTlKQU1+0FwU1g5BtY8CwdXQqfJUKCU2dXZpBw3mpRSrkqpPUqp1ZYoyFYcTkzh8Rk7ePqrnymW34vloxvxbreqEt5CWFuBUtB/mXFflVM/wdSGsHseaG12ZTbHEivwp4GDgK8Fnst0KalpfPr9UeZIu0QI8yhltE/KNocV/4KV/zJW4x0nGe0WAeRwBa6UCgDaA5GWKcc8WmuW7zlD849+ZNa2eHqFlmLzc83oU0+2BgphmoJBMGAltPsA4qPg83rwyyJZjWfJ6Qr8U2AsYNenmh5OTOHVFfvYFX+J6gH5iRwQSnXZXSKEbXBxgXoj4JGWxhFuy8LhwAro+KmxFdGJZXsFrpTqAJzXWsfe5+PClVIxSqmY5OTk7F7OKlJS05iw+gCPTYriSFIK73aryrLRjSS8hbBF/mVh8LfGeZzHvocp9WDfN2ZXZSqls/mjiFLqXaA/kA54YfTAv9Fa9/unzwkNDdUxMTHZup4laa1Z8fNZ3l57kAvXb/NE3UD+01p2lwhhN5IPw7KRcHY3VO4C7T82xvQdlFIqVmv9l+ONsh3gdz15M+B5rXWHe32cLQT4ocRrvLZi/+/tkgldQqgWUMDUmoQQ2ZCRDtETYfO7kKfAH6cBOaB/CnCn2Qd+LTWNTzccZe72E/h6ufFet6r0Ci2Fi/yCUgj75OpmHBBRvq2xGl/UD6r2Mg5Z9vYzu7pcYZEA11r/APxgieeyNK01y38+wztrD3Hh+m361A3keWmXCOE4ilaB4Zsg6iPY8iHEb4FOk4zDJBycQ6/ADyVe47Xl+9l14hLVSxVg5sBQaZcI4Yhc3Y3Dk8u3NXaqfNkLavSDtu8Yx7s5KIcMcGmXCOGkStSA8B/gx/dh6ycQtxk6fQaPtDC7MqtwqAD/rV3y9ppDXLxhtEv+06YCBbylXSKE03DzhBavQYX2sHwkzO8GtQcbN8fytOuRlb9wmAA/eO4a41f80S6ZNUjaJUI4tYDaMCIKNr8F0ZPh+EboPAWCm5hdmcXYfYBfS03jkw1H+GJ7Ar5ebrzfvSo9a0u7RAgBuHsZgz8VOxi98bkdoe4IaDkePHzMri7H7DbAtdYs22PsLrl44zZ96xm7S6RdIoT4i8D6MHIbbHwDdk6DYxuMI9wC65tdWY7YZYAfPHeN11bs46cTl6lRqgCzB9WhaoDj/qZZCGEBHt7GHvGKHWDFaJjV1jhMufkr4J7H7Oqyxa4C/FpqGh9/d4R5OxLIn8dd2iVCiIcXHAajthuHKW+fDEe/M1bjAX8ZdLR5dhHgWmu+2X2Gd7+VdokQwgI88/4xer9iDMxsBY3+bewld/M0u7oHZhcB/tKyvSzcdUraJUIIyyrbHEZHw/qXYOvHcGSdsRovUcPsyh6IRW5m9aCyezOrmBOXiEu+QY/aAdIuEUJYx5H1sPIpuHkBwp437rPiZhs/5f/TzaxyfCZmbggN8qNXHel1CyGsqHwbeHIHhHSHH9+DyOaQtN/squ7JLgJcCCFyRZ6C0G0G9F4AKYkwvSls+a9x61obJAEuhBB3q9QBRu80/tw0wfglZ/Jhs6v6CwlwIYT4Oz7+0HMO9JgNl0/AtDDYNgkyM8yu7HcS4EIIcS8h3eDJnVCulbF3fHY7uHjc7KoACXAhhLi/vEWg93zoFgHJh2BqI9gxDTIzTS1LAlwIIR6EUlCtl9EbDw6DdS8YN8e6FG9aSRLgQgjxMHyLQ5/Fxq1pE381VuM/zYRcnKn5jQS4EEI8LKWgZj8YFQ2l6sKaZ2FeF7hyKlfLkAAXQojsKlAK+i8z7qty6ieY2hB2z8u11bgEuBBC5IRSEDrEuKdK8eqw8l/GocrXzln90tkOcKVUKaXUZqXUQaXUfqXU05YsTAgh7ErBIBiwEtp9APFR8Hk9+GWRVVfjOVmBpwPPaa0rAfWBJ5VSlS1TlhBC2CEXF6g3AkZtg8IVYVk4fNUXrp+3zuWy+4la63Na691Zf08BDgIlLVWYEELYLf+yMPhb4zzOY9/DlHrGqtzCLNIDV0oFATWBnX/zvnClVIxSKiY5OdkSlxNCCNvn4goNx8DIKOP+4n5lLH6JHN8PXCmVF/gReFtr/c29Pja79wMXQghnZpX7gSul3IGlwIL7hbcQQgjLyskuFAXMBA5qrT+2XElCCCEeRE5W4I2A/kBzpdTPWf88ZqG6hBBC3Ee2DzXWWm8F5IwzIYQwiUxiCiGEnZIAF0IIOyUBLoQQdkoCXAgh7FSOB3ke6mJKJQMJuXZB6ygEXDC7CBsir8cf5LX4f/J6/L+cvB6ltdaF734wVwPcESilYv5uIspZyevxB3kt/p+8Hv/PGq+HtFCEEMJOSYALIYSdkgB/eDPMLsDGyOvxB3kt/p+8Hv/P4q+H9MCFEMJOyQpcCCHslAS4EELYKQnwBySHOP+VUspVKbVHKbXa7FrMppQqoJRaopQ6lPU10sDsmsyilHom63tkn1JqoVLKy+yacpNSapZS6rxSat+fHvNTSm1QSh3N+rOgJa4lAf7g5BDnv3oa4yxUAROBdVrrikB1nPR1UUqVBJ4CQrXWIYAr8Li5VeW6OUDbux4bB2zUWpcDNma9nWMS4A9IDnH+f0qpAKA9EGl2LWZTSvkCTTAOOEFrfUdrfcXUoszlBuRRSrkB3sBZk+vJVVrrLcClux7uDMzN+vtcoIslriUBng33OsTZiXwKjAUyTa7DFpQBkoHZWS2lSKWUj9lFmUFrfQb4L3ASOAdc1Vp/Z25VNqGo1vocGItBoIglnlQC/CFlHeK8FPi31vqa2fWYQSnVATivtY41uxYb4QbUAqZqrWsCN7DQj8j2Jqu32xkIBkoAPkqpfuZW5bgkwB+CHOL8u0ZAJ6XUCeArjGP15ptbkqlOA6e11r/9RLYEI9CdUUsgXmudrLVOA74BGppcky1IUkoVB8j687wlnlQC/AHJIc5/0Fq/qLUO0FoHYfyCapPW2mlXWVrrROCUUqpC1kMtgAMmlmSmk0B9pZR31vdMC5z0F7p3WQkMzPr7QGCFJZ4022diOqHfDnHeq5T6Oeuxl7TWa80rSdiQMcACpZQHEAcMNrkeU2itdyqllgC7MXZu7cHJRuqVUguBZkAhpdRpYDzwHrBYKTUU439yPS1yLRmlF0II+yQtFCGEsFMS4EIIYackwIUQwk5JgAshhJ2SABdCCDslAS6EEHZKAlwIIezU/wBAqaqeyzYnsQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x1 = [1,4,6,10] #specifying points required for plotting.\n",
+ "y1 = [3,7,11,15]\n",
+ "x2 = [2,6,10]\n",
+ "y2 = [15,8,2]\n",
+ "\n",
+ "# to create a plot, use .plot() command.\n",
+ "plt.plot(x1,y1) #plots the points on graph\n",
+ "plt.plot(x2,y2)\n",
+ "plt.show() #shows the graph."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c9fd4d7a",
+ "metadata": {},
+ "source": [
+ "We can also edit these graphs, add heading, label axis and label graphs in case there are more than one set of data is plotted on the same graph."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "29e17ba3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA49klEQVR4nO3dd3iUVfbA8e9JAoTeewgJCAQIECD0joAgvUuTJk0XXStYfuKK7qq7NiwgvYog0gREEVBChwBKVUooAQKhSA+k3N8f74Ax0pmZdyZzPs8zT5j6nhmSM3fO3HuuGGNQSinlO/zsDkAppZR7aeJXSikfo4lfKaV8jCZ+pZTyMZr4lVLKx2jiV0opH6OJXymlfIwmfuXxROSgiFwRkQsi8oeIrBWRwSLil+o2k0XkmohcTHX6xXFdiIgYEdmS5nHzOe5zMM3lfURku4hcFpE4ERktIrnuEGOkiCwSkbOOGHeJyNsikjvVYyY74jovIr+ISKubPM4bjlir3ySm1Pffdv3+ItJQRGJv8lg/icgTd3p9le/RxK+8RWtjTHagOPAOMAyYkOY27xljsqU6VUpzfVYRCU91vjsQk/oGIvI88C7wIpATqOk45jIRyXizwESkNvATsAYIM8bkApoDSUDqGNYZY7IBuYDPga9Sv6GIiAC9gDNA75scKvX9JwCzRSTPzWJS6nY08SuvYow5Z4xZCHQFeqdJ5Hcyjb8m1MeBqdfPiEgO4F/AUGPMUmNMojHmINAFK/n3vMXjvgdMMsb8xxhzwhHnYWPMCGPMTzd5DimOWLICpVJdVQ8oAjwDPHarNxrH/ScCmYESd3rSSqWliV95JWPMRiAWK1nerelYCdVfRMoC2YENqa6vDQQCc9Mc6yLwHdA07QOKSFagFvDN3QYhIv5AXyAROJTqqt7At8Asx/m/lYIc9w8AngAuAnvv9rhKXaeJX3mzY0DqUscLjvr69dOUNLePBX4DmmAl2alprs8HnDLGJN3kWMcd16eVG+vvKO76BSLynuP4l0TktVS3rSkifwAJwP+AnsaYk477ZAE6A18aYxKBOfy93HP9/nFAN6C9Meac47oiaZ77H0Ddm8SrlCZ+5dWKYtXDr/ufMSZXqtPN6uRTgT5YiXN6mutOAfkcI+q0CjuuT+sskOK4HgBjzEuOOv88IPVjrXdcnhtYyF8/rbTH+k5gieP8DKCFiORPe39jTD5jTE1jzI+prjuW5rnnAlbfJF6lNPEr7yQi1bAS/70mt2+AlsABY8yhNNetA64CHdIcKyvQAlie9sGMMZewykUd0l53K47S0ZNALxGp7Li4N5ANOCwiccDXQAasNyilnEoTv/IqIpLDMY3xK2C6MWb7vdzfkagbY9XI0153DuvL3U9EpLmIZBCREKwkHIv1hezNvAT0E5HhIlLAEWcQEHqbOE4D44HXRaQo8DBWTT/CcaqENbvoZp9alHogN/tIq5Qn+lZEkrDKKruAD4AxaW7zkoj8M9X5BGPM3+ryxpjNtzqIMeY9ETmNVYMvCZwH5gM9jDFXb3Gf1SLSGBgBDLdmZRILLAA+uc1z+gjYD/QHthljfkh9pYiMAp6/x5lLSt2R6EYsSinlW7TUo5RSPkYTv1JK+RhN/Eop5WM08SullI/xilk9+fLlMyEhIXaHoZRSXiU6OvqUMSZ/2su9IvGHhISwefMtZ+AppZS6CRFJu0gR0FKPUkr5HE38SinlYzTxK6WUj9HEr5RSPkYTv1JK+RhN/Eop5WM08SullI/RxO8O22bC7kV2R6GU8iJHzlxm5KJdnLuc6PTH9ooFXF4tJQW2TIXDa6He89DoVfDztzsqpZSH2nL4LOOjDrB0Rxx+ItQqkZcm5Qo69Ria+F3Nzw96zYPvXoSo9+HYVug4AbLkufN9lVI+ITnFsGzXCcZFHSD60FlyBAYwsH5J+tQOoVDOQKcfTxO/O2QIhDafQNGqsORFGNsAukyDIhF2R6aUstHla0nMiY5lwuoYDp2+TLE8mRnRuhxdIouRNZPr0rMmfneq2gcKVoDZvWDiI9DqQ4jobndUSik3O3k+gSnrDjJjw2H+uJxI5eBcDGsexiPlC+HvJy4/viZ+dwuqCoNWwZy+MH8IxG6G5u9AQEa7I1NKudhvcRcYF3WAhduOkZiSwiPlCjGgfihVi7u39KuJ3w5Z80HPebD8X7B2FMRthy5TIEcRuyNTSjmZMYaovacYF3WAqL2nyJzBn27Vi9GvbijF82a1JSZN/HbxD4BmI6FoFZj/FHxRHzpPgZA6dkemlHKCa0kpLPzlGOOjDrAn7gL5s2fixUfK0KNGMLmy2PsJXxO/3cq3h/xlYVYPmNIamr0FNYeAuL7Op5Ryvj8uX2PGhsNMWXuQkxeuUqZgdv7bqSJtIoqQKcAzpnJr4vcEBcJgwEqr5v/9y3A0GtqMgoz2fAxUSt27Q6cvMXF1DLM3x3IlMZl6pfLxv86VqFcqH+JhAzlN/J4iMIc1xXPNh7B8JJzcBV2nQ96SdkemlLqN6ENnGLcqhu93xRHgJ7SNKMoT9UIJK5TD7tBuSRO/J/Hzs1b3Fo6Ab/rD2EbQYSyUaW53ZEqpVJJTDD/sjGNc1AG2HP6DnJkzMKRBSXrXDqFgDucvuHI2Tfye6KGHYeDP1nz/mV2hwTBoMNx6Y1BK2ebS1SS+3nyEiWsOcvjMZYLzZOFfbcrTOTKILBm9J526LFIRmQi0Ak4aY8LTXPcC8F8gvzHmlKti8Gq5i0O/72Hx8/Dzu1arhw5jIXNuuyNTyuecOJ/A5LUHmbH+EOcTkqhaPDevPBpG03LuWXDlbK58i5oMfApMTX2hiBQDmgKHXXjs9CFDZmj7mdXq4bthMLahVfcvVMHuyJTyCbuPn2dc1AG+/eUYySmG5uGFeKJeCaoEe/cAzGWJ3xizSkRCbnLVh8BLwAJXHTtdEYFq/aFQRav0M74ptP4YKnW1OzKl0iVjDKv2nmK8Y8FVloz+9KhRnH51QgnOm8Xu8JzCrUUpEWkDHDXG/HKn6U0iMhAYCBAcHOyG6DxcsWpWq4ev+8C8gdaUz0feBv8MdkemVLpwNSmZBduOMSEqht9OXKBgjky81LwMPaoXJ2eW9PV35rbELyJZgFeBZndze2PMWGAsQGRkpHFhaN4jWwF4fAEsGwHrP4O4X6HzZMheyO7IlPJaZy9dY8aGQ0xZd4j4C1cJK5Sd9ztXonWlImQMSJ8TKtw54i8JhALXR/tBwBYRqW6MiXNjHN7NPwM0/7fV6mHhUKvVQ5epEFzT7siU8ioHT11iwuoYvo4+QkJiCg1K52dAlxLUeSivxy24cja3JX5jzHagwPXzInIQiNRZPfepQicoUBZm9YTJLeGR/0D1AdrqQanbMMYQfegsY1cdYNnuE2Tw86NtRBGeqFeCMoWy2x2e27hyOudMoCGQT0RigRHGmAmuOp5PKljeavUwb5C1w9fRzdDqI8iYPr6AUspZkpJT+H6ntcPVtiN/kCtLBp5q+BCP1y5Ogeyev+DK2Vw5q6fbHa4PcdWxfUrmXPDYTIj6H6z8N5zYBV2nQZ5QuyNTynYXryYxe9MRJq6JIfbsFULyZmFk2/J0rOpdC66czXefeXri5wcNXoIilR2tHhpCx/FQqqndkSlli7hzCUxaG8OXGw5zISGJaiG5+b9W5WhStqBXLrhyNk386Umpplarh1m9YEZnaPQK1HtBWz0on7Hz2DnGR8Xw7S/HSDGGFuGFeaJeKJW9fMGVs2niT2/yhEL/H2DRP2Hl23B0C7QfY5WElEqHjDH89Hs841YdYO3+02TN6E+vWtaCq2J59Puum9HEnx5lzALtv4CikVZ//3GNoOsMKFjO7siUcpqExGQWbDvK+KgY9p68SKEcgQxvEUa36sHkzJy+Flw5myb+9EoEagyEwhVh9uMw/mFo+ymEd7Q7MqUeyJlL15i+/hBT1x3k1MVrlCucgw+7VqJlhfS74MrZNPGnd8E1rVYPs3vDnH4QGw1N/6WtHpTXORB/kQmrY/hmSywJiSk0KpOfAfVKUKtk+l9w5Wya+H1B9kLQ+1v44TWr1cPxX6DzJKsFhFIezBjDxpgzjIuKYfkea8FV+8rWDlelCvrOgitn08TvKwIywqPvWS2ev30GvmhgtXooVs3uyJT6m6TkFL7bEcf4qAP8EnuO3FkyMLTRQ/SqFUL+7JnsDs/raeL3NZW6Wl/yftUDJrWAFu9CZD9t9aA8wsWrSXy18TCT1hzk6B9XCM2XlbfahdOxShCZM/rbHV66oYnfFxWqAAN/grkDYfFzVovnlu9bG78oZYNjf1xh8tqDzNxwmAtXk6gemoc32pTn4bAC+OmCK6fTxO+rsuSB7rPh53esrR1P7IAu06wtH5Vykx1HzzEu6gCLfz2OAVqEF2JAvRJUKpbL7tDSNU38vszPz1rdW6QyzB0EYxtAp4lQsrHdkal0LCXFsPK3k4yLOsD6A2fIlimA3rVD6FsnhKDcuuDKHTTxKyjTAgautFo8T+8IjV+Dus9p3V85VUJiMvO2HmV81AH2x1+icM5AXnk0jMeqB5MjUKcXu5MmfmXJWxKe+NHa3GX5m1arh3ajITCH3ZEpL3f64lWmrT/EtHWHOH3pGuFFc/DxYxE8WqEwGfx1wZUdNPGrP2XMCh0nWK0efngNxjWGrtOhQJjdkSkvtD/+IuOjYpi7JZarSSk8HFaAJ+qVoGaJPLrgymaa+NVfiUCtJ61WD1/3cbR6+AzKt7M7MuUFjDFsiDnDuFUHWL7nJBkD/OhYpSj964byUAFdcOUpNPGrmwup62j18Dh83RuOPg0PjwB//ZVRf5eYnMKS7ccZHxXD9qPnyJM1I888XIpetYqTL5suuPI0+lesbi1HEeizGJa+DGtHwfFt0GkSZM1nd2TKQ5xPSGTWxiNMWhPDsXMJlMiflX+3r0CHKkUJzKALrjyVJn51ewGZoNUHVquHRc9arR66TrXOK5919I8rTFodw1ebjnDxahI1QvMwsl04jcrogitvoIlf3Z3KPazN3Wf1gonN4dH/QdXedkel3Gx7rGPB1fbjALSsUJgB9UpQISinzZGpe6GJX929IhEw6GervfO3T1utHh79r/WpQKVbKSmGFXusBVcbYqwFV/3qhNCnTihFc2mbD2+kiV/dmyx5oOc31raOUe9D3HboOg1yBtkdmXKyhMRkvtkSy4TVMRyIv0TRXJl5rWVZulYrRnZdcOXVXJb4RWQi0Ao4aYwJd1z2X6A1cA3YD/Q1xvzhqhiUi/j5w8OvQ5EqMG8wfFHf+tK3RAO7I1NOcOriVaauO8T09Yc4c+kaFYNyMqpbZR4NL0SALrhKF8QY45oHFqkPXASmpkr8zYAVxpgkEXkXwBgz7E6PFRkZaTZv3uySONUDOrXXavVw6ndo8gbUflpbPXipfScvWAuuth7lWlIKTcoWYEC9ElQP1QVX3kpEoo0xkWkvd9mI3xizSkRC0lz2Q6qz64FOrjq+cpN8paxWDwuegmWvW3X/tp9BJl2s4w2MMaw7cJrxUTGs2HOSTAF+dKoaRP+6oZTMn83u8JSL2Fnj7wfMutWVIjIQGAgQHBzsrpjU/ciUHTpPgbWfwI8j4OQeeGyG9aagPFJicgqLfz3OuKgD7Dx2nrxZM/Jsk9L0rBlMXl1wle65rNQD4BjxL7pe6kl1+atAJNDB3EUAWurxIgd+hjl9IekatB8NZVvbHZFK5XxCIjM3HGby2oMcP5fAQwWy8UTdUNpV1gVX6ZHbSz23CaQ31pe+D99N0ldepkQDq9XDrF5W7b/uc1abZz9NKnY6cuYyk9YcZNamw1y6lkytEnl5u304DUvrgitf5NbELyLNgWFAA2PMZXceW7lRziDo+x189xKs/gCObbU2eMmSx+7IfM62I38wLuoAS3fEIUCrioV5ol4Jwovqgitf5srpnDOBhkA+EYkFRgAvA5mAZY5ZAuuNMYNdFYOyUYZAaDPKau2w5AVHq4dp1iIw5VIpKYYfd59gfFQMGw+eIXtgAE/UDaVPnRAK59QFV8rFNX5n0Rq/lzsaDbMeh0vx0OpDq/2Dcror15KZsyWWiatjiDllLbjqVzeUrtWKkS2TrtX0RR5T41c+qGhVR6uHvrDgSeuNoPk7EJDR7sjShfgLV5m67iDT1x/i7OVEKgXl5NPulWleXhdcqZvTxK/cI2s+6DkPVrwJaz6GuF+hy1Sr9bO6L7+fuMD4qAPM33qMxJQUmpQtyIB6JagWklsXXKnb0sSv3Mc/AJq+abV6WPCU1eqh82Rr0xd1V4wxrN1/mnFRB/jpt3gCM/jRpVoQ/euWIDRfVrvDU15CE79yv/LtIH8YzOoBU9pAs5FQ80lt9XAb15JSWPTrMcZFxbD7+HnyZcvE801L06NmcfJk1ZKZujea+JU9CoTBgJUwfwh8/4pV92/zibXhu7rh3JVEvtxwmMlrYzhx/iqlCmTjvY4VaRNRRBdcqfumiV/ZJzAHdJ0Oqz+EFSPh5G7rfN6SdkdmuyNnLjNhdQyzNx/h8rVk6jyUl3c7VqRB6fxav1cPTBO/spcI1HvOmt8/pz+MbQQdxkKZ5nZHZouth8/eWHDlJ0KbSkXoXy+U8kV0wZVyHk38yjOUbGxN+ZzVE2Z2hfovQcPhPtHqITnFsGzXCcZHHWDzobPkCAxgYP2S9KkdQqGcgXaHp9IhTfzKc+QKhn7fw+LnYdV7VquHDmPTdauHVb/H838LdnDo9GWK5cnMiNbl6BJZjKy64Eq5kP52Kc+SIbPVz79oVfhuGIxtaNX9C1e0OzKnmxMdy7BvfqVEvqx81r0Kj5QvqAuulFvob5nyPCJQrb/V6C05ESY0hV9uuXWD1zHGMPqn/bzw9S/ULJGHuU/WpmXFwpr0ldvob5ryXMWqWXX/opEwbyAsecnq8+/FUlIM//p2F+8u3UObSkWY1Ke6blyu3E4Tv/Js2QrA4/Oh1j9g4xcwpTVciLM7qvtyNSmZoV9tZfLag/SvG8pHXSPIGKB/gsr99LdOeT7/DPDI21ZP/7hfrVYPh9bZHdU9OZ+QSJ+Jm1j863FefbQs/9eqnG6AomyjiV95j/CO8MRya3XvlFaw4QvwgrbiJ88n0PWL9Ww6eIYPu1ZiQP0SdoekfJwmfuVdCpazWj081NTa4WveILjmuZu57Y+/SPvP13Lo9CUm9qlG+8pBdoeklCZ+5YUy54LHvoRGr8Gvs2FCMzgTY3dUf7P18Fk6jV5LQmIyXw2sSf3S+e0OSSlAE7/yVn5+0OBF6PE1nDsCYxvA3mV2R3XDij0n6D5uA9kDM/DNkNpUDMpld0hK3aCJX3m3Uk1h4E+QMxhmdIaf3oWUFFtDmr35CAOmRlOyQFa+GVKbEO2TrzyMJn7l/fKEQv8foGJX+Onf8FU3uPKH28MwxvDZyn28NOdXapfMy1cDa5E/eya3x6HUnWjiV+lDxizQfgy0+C/s+xHGNYITO912+OQUwxsLd/Lf73+jbUQRJvSuphucK4/lssQvIhNF5KSI7Eh1WR4RWSYiex0/c7vq+MoHiUCNgdBnsTXTZ3wT2D7H5YdNSExm6MwtTFl3iAH1Qvmwiy7MUp7Nlb+dk4G0TdWHA8uNMaWA5Y7zSjlXcE2r1UPhSvBNf1j6itXzxwXOJyTSZ9JGlmyP49VHy/JqS12YpTyfyxK/MWYVcCbNxW2BKY5/TwHauer4ysdlLwS9v4Uag2H9ZzC1LVw86dRDnDifQJcx64g+dJaPH4vQhVnKa7j782hBY8xxAMfPAre6oYgMFJHNIrI5Pj7ebQGqdMQ/A7R4FzqMg6NbrFYPRzY55aH3nbxIh8/XcuTMZSb2qUbbiKJOeVyl3MFjC5HGmLHGmEhjTGT+/LrwRT2Ail3giWUQkAkmtYBN4x+o1cOWw2fpNGYtV5OSmTWoFvVK6e+n8i7uTvwnRKQwgOOncz97K3UrhSpY8/1LNrJ2+Jr/JCReueeHWb77BN3HrSdXZmthVnhR3QtXeR93J/6FQG/Hv3sDC9x8fOXLMueGbrOgwXD45Uur1cPZQ3d999mbjjBwWjSlCmRnzpDaFM+rC7OUd3LldM6ZwDqgjIjEikh/4B2gqYjsBZo6zivlPn5+0Ohl6w3g7CGr1cO+5be9izGGT1fs5aVvri/Mqkm+bLowS3kvMV7Q1jYyMtJs3rzZ7jBUenN6P8zqCSd3Q+PXoO5z1htDKtcXZk1bf4j2lYvybseKOkdfeQ0RiTbGRKa9XH+Dle/KWxKe+NHq879iJMzuBQnnb1ydkJjMUzO2MG39IQbVL8H7nStp0lfpgq4pV74tY1boOB6KVoUfXrNaPXSdwbnsJRkwdTMbY87wWsuyPFFP5+jbKTExkdjYWBISEuwOxSMFBgYSFBREhgx3t3+zJn6lRKDWk9ZK36/7kDKuEZ9kGMrWcxGM6laZNpWK2B2hz4uNjSV79uyEhIQgoiujUzPGcPr0aWJjYwkNDb2r++jnVqWuC6lDTMfF7EoK4rXL7/JTxeW0Cb/lGkPlRgkJCeTNm1eT/k2ICHnz5r2nT0N3TPwiUlJEMjn+3VBEnhaRXPcfplKeKfrQGdpNO8gTfm9yutzjFN09Hqa1g0un7A5NgSb927jX1+ZuRvzfAMki8hAwAQgFvrz30JTyXD/uOkGP8RvIkzUjs59sQN4un0C70RC7yWr1EBttd4jKZv7+/kRERNw4HTx4kNq1a9/TY3z00Udcvmz/HtF3k/hTjDFJQHvgI2PMs0Bh14allPt8tfEwA6dtpkzB7MwZXIvgvFmsKyK6Wxu8+PnDpOYQPdnWOJW9MmfOzLZt226cQkJCWLt27d9ul5ycfMvH8KbEnygi3bBW2i5yXHZ3Xx0r5cGMMYxavpfhc7dTr1R+vhxQk7xpF2YVrgQDf4aQuvDtM7BwKCTqzBJlyZYtGwA//fQTjRo1onv37lSoUIFLly7RsmVLKlWqRHh4OLNmzWLUqFEcO3aMRo0a0ahRI1vjvptZPX2BwcDbxpgYEQkFprs2LKVcKznF8PqCHczYcJgOVayFWRn8bzEOypIHesyBlW9D1PsQtx26TINcxdwbtALgX9/uZNex83e+4T0oVyQHI1qXv+1trly5QkREBAChoaHMmzfvL9dv3LiRHTt2EBoayjfffEORIkVYvHgxAOfOnSNnzpx88MEHrFy5knz58jk1/nt1x8RvjNkFPJ3qfAzaakF5sYTEZJ75aivf7zzB4AYlGda8zJ2/HPPzh4dft+b7zx1ktXroNBFKNHRLzMp+10s9t1K9evUb0ykrVKjACy+8wLBhw2jVqhX16tVzU5R355aJX0RmG2O6iMh24G99HYwxFV0amVIucO5yIgOmbmbToTO83qoc/ere3bznG8JawsCVVquHae2hyRtQ+2lrLYByizuNzO2SNeufTftKly5NdHQ0S5Ys4eWXX6ZZs2a8/vrrNkb3V7cb8T/j+NnKHYEo5WrHz12h98SNHDx1mVGPVab1/S7MylcKnlgOC56CZa/D0Who+xlkyu7cgJXXOnbsGHny5KFnz55ky5aNyZMnA5A9e3YuXLjguaWe6ztlAVkd5Z4bRKQhcPf9bJWy2d4TF3h84kYuJCQxuW81aj/0gH94mbJB58mw7lMr+Z/cA12nQ/7STolXebft27fz4osv4ufnR4YMGRg9ejQAAwcOpEWLFhQuXJiVK1faFt8du3OKyA5gGvAeEOj4GWmMqeX68CzanVM9iM0Hz9B/ymYyBvgxuW81yhdx8uYpMavg676QdBXaj4ayrZ37+Irdu3dTtmxZu8PwaDd7jR6kO2cNoBiwFtgEHAPqOCFOpVzuh51xNxZmzR1S2/lJHyC0Pgz62Rrtz+oJP74BKbeey62U3e5qHj9wBciMNeKPMcakuDQqpZzgyw2HGTw9mrDCOZgzuBbF8mRx3cFyBkHf76BqH1j9IUzvCJdOu+54Sj2Au0n8m7ASfzWgLtBNROa4NCqlHoAxho9+/J1X5m2nfun8zBxQ4+8Ls1whIBO0/hjafAKH1sLYhnBsq+uPq9Q9upvE398Y87oxJtEYE2eMaYvulas8VHKK4dX5O/jox710qhrEuMcjyZLRzd3HqzwO/ZaCSYEJj8BWXe+oPMsdE78x5sa3qiKSVUR6AI+5NCql7kNCYjJDpkfz5YbDPNmwJP/tdJvVuK5WtIpV9w+uaU37XPSs9eWvUh7gbtoyZxSRdiIyGzgONAHGuDwype7BH5ev0XP8BpbtPsEbrcvxUvMw+9v4Zs0HPedCnWdg80SY9CicO2pvTEpxm8QvIk1FZCIQA3TCmtJ5xhjT1xjzrbsCVOpOjv1xhc5j1vFr7Dk+7VaFPnXucTWuK/kHQNM3octUiN9jtXqIibI7KnWf3n77bcqXL0/FihWJiIhgw4YNbj3+Tz/9RKtWD76m9nbFz++BKKCuoz8PIvLxAx9RKSf6/cQFHp+wkUtXk5jSrzq1Sua1O6SbK9cW8ofBVz1galtoNhJqPqmtHrzIunXrWLRoEVu2bCFTpkycOnWKa9eu2R3WfbldqacqsB74UUSWiUh/wN8ZBxWRZ0Vkp4jsEJGZIhLojMdVvmVjzBk6jV5LijHMGlTLc5P+dfnLwIAVUKYFfP8KzOkHVy/aHZW6S8ePHydfvnxkymTNEMuXLx9FihQhOjqaBg0aULVqVR555BGOH7eaHuzbt48mTZpQqVIlqlSpwv79+zHG8OKLLxIeHk6FChWYNWsWYI3kGzZsSKdOnQgLC6NHjx5cX1y7dOlSwsLCqFu3LnPnznXKc7ldy4atwFZgmIjUAboBGUXkO2CeMWbs/RxQRIpidfssZ4y54vju4DFg8v08nvJN3++MY+jMrQTlzsyUvtVdO0ffmQJzWK0d1nwEy9+Ek7vhsRmQt6TdkXmP74ZbrbGdqVAFaHH7psPNmjXjzTffpHTp0jRp0oSuXbtSu3Zthg4dyoIFC8ifPz+zZs3i1VdfZeLEifTo0YPhw4fTvn17EhISSElJYe7cuWzbto1ffvmFU6dOUa1aNerXrw/A1q1b2blzJ0WKFKFOnTqsWbOGyMhIBgwYwIoVK3jooYfo2rWrU57uXU15MMasMcb8AygKfAQ8aLuGACCziAQAWbBWAyt1V6avP8SQ6dGUK5yDOYNre0/Sv04E6j4LPb+BiyfgiwawZSrcoX2Ksle2bNmIjo5m7Nix5M+fn65du/LFF1+wY8cOmjZtSkREBG+99RaxsbFcuHCBo0eP0r59ewACAwPJkiULq1evplu3bvj7+1OwYEEaNGjApk2bAKutc1BQEH5+fje2dtyzZw+hoaGUKlUKEaFnz55OeS73NMHZsWL3e8fpvhhjjorI/4DDWAvDfjDG/JD2diIyEBgIEBwcfL+HU+mIMYYPf9zLqOV7aRxWgE+7V3b/HH1nKtnYmvI5/0lrZ6/d31oLwHLcZ9dQX3GHkbkr+fv707BhQxo2bEiFChX47LPPKF++POvWrfvL7c6fv/lGMbfrjXa9hHT9OElJSYBrNpl3+yRnEckNtMXatL0IkFVE/vY2ZowZa4yJNMZE5s+f391hKg+TlJzCK/O2M2r5XjpXDeKLXlW9O+lflysYHl8ILd6zZvt8XhN++UpH/x7ot99+Y+/evTfOb9u2jbJlyxIfH38j8ScmJrJz505y5MhBUFAQ8+fPB+Dq1atcvnyZ+vXrM2vWLJKTk4mPj2fVqlVUr179lscMCwsjJiaG/fv3AzBz5kynPJfbTedcIiIhTjnKXzXB6vcTb4xJBOYC97ZVvfIpV64lM3j6FmZuPMI/Gj3Ee3YuzHIFPz+oMQiGrIH8ZWHeIGv2z4UTdkemUrl48SK9e/emXLlyVKxYkV27dvHmm28yZ84chg0bRqVKlYiIiLixAfu0adMYNWoUFStWpHbt2sTFxdG+fXsqVqxIpUqVaNy4Me+99x6FChW65TEDAwMZO3YsLVu2pG7duhQvXtwpz+WWbZlFpAvwFjAFeM+RpB/8gCI1gIlYvX+uYH2pu9kY88mt7qNtmX3XH5ev0X/KZrYcPsu/2pTn8VohdofkWinJsP5zWD4SMmaFlv+D8I52R2U7bct8Z05py2yMmQ1UBnIAm0XkBRF57vrpfoMzxmwA5gBbgO2OGO5rhpBK347+cYVOY9axPfYcn3Wvkv6TPlh7+9YeCoNXQ55Qa8rn7N5w6ZTdkal05E5F0kTgEpAJyA44pR2zMWYEMMIZj6XSp9/iLtB74kYuXUtiav/q1Czh4XP0nS1/aej3A6z9GFb+Bw6tgVYf6iYvyilut9l6c+ADYCFQxRhz2W1RKZ+24cBpnpi6mSwZ/fl6cC3CCuWwOyR7+AdAveehdHOYN9ja5KVCF2jxLmTJY3d0yovd7huyV4HOxpjhmvSVuyzdcZxeEzdSIHsmvhlS23eTfmoFy1srfhu+DDvnwue14Pf7nlHtte60Tawvu9fX5nY1/nrGmJ0PHJFSd2na+kMMmbGF8CLWwqyg3F62MMuV/DNAw+HwxHLIkhe+7ALzn4KEc3ZH5haBgYGcPn1ak/9NGGM4ffo0gYF33/kmHUyEVt7OGMMHy37nkxX7eDisAJ92r0LmjE5pC5X+FImAgSvh5/esLR4PrLR2/HroYbsjc6mgoCBiY2OJj4+3OxSPFBgYSFBQ0F3f/pbTOT2JTudMv5KSU3h13g5mbT5C18hivN0+nID0NEfflY5Gw7whcOo3qNrX6viZKbvdUSkPcs/TOZVytSvXkhk0LZpZm4/wdOOHeKdjBU3696JoVRi0ypr+GT0ZRteGmFV2R6W8gP6VKVucvXSN7uPXs+K3k4xsF85zzcrYv2OWN8oQCM3egn7fg18ATGkNS16Ca5fsjkx5ME38yu1iz16m45i17Dx2ntE9qtCrpnOWofu04BoweA3UGAwbv4AxdeHwerujUh5KE79yG2MMS3fE0eHztZy6cJXp/WvQPLyw3WGlHxmzWHP8+yy2Wj9MbA7fvwqJV+yOTHkYTfzKLWJOXaL3pE0Mnh5NnqwZ+XpwbaqH6iIklwipC0PWQmRfWPcpfFEfYnVyhPqTTudULnX5WhKfrdzHuFUxZArw4/VW5Xi8VnH9EtfVMmX7s8XDgqEwoSnUecZaBBaQ6c73V+maJn7lEsYYvt8Zx8hFuzn6xxU6VC7K8EfDKJBdt1d2q5KN4cm11h6/qz+0Vvy2G22tB1A+S4ddyukOxF90lHW2kD0wgNmDavFB1whN+nYJzAltP4PuX8OVszCuMaz8NyRdszsyZRMd8SunSVvWGdG6HL1qalnHY5RuBk+ug++Gwc/vwm9LoN0YKBRud2TKzTTxqwd2vazz5re7OHYugQ5VijK8hZZ1PFLm3NBhLJRtA4v+CWMbQsNhUOdZqxuo8gn6P60eyIH4i4xYuJOovacIK5Sdj7tVplqIztbxeGVbQXAtWPI8rHgL9iyB9mMgfxm7I1NuoIlf3ZfL15L4dMU+xkUdIDDAnzdal6OnlnW8S9a80HmyNfpf/DyMqQeNX4Va/7B2AlPpliZ+dU+uL8Iaucgq63SsEsTwFmHkz65TBL1WeAdr7v+iZ2HZ67BnsTXzJ29JuyNTLqLDM3XX9sdf5PGJGxkyYws5s2RkzuBavN+lkib99CBbAeg6HTqMg/g9MLoOrB8NKU7ZbVV5GB3xqzu6fC2JT1bsY3zUAQIzaFkn3RKBil0gpB58+zQsHQ67F0HbT62N31W6oYlf3ZIxhu8cZZ3jWtbxHTkKQ/fZsG0GLH3ZGv03GwmR/aw3B+X1bEn8IpILGA+EAwboZ4xZZ0cs6ub2nbzIGwt3snrfKcoWzsEn3SoTqbN1fIcIVO4JoQ1g4VBY/BzsXghtPoVcxeyOTj0gu0b8HwNLjTGdRCQjoJureohLV62yzoTVVlnnX23K06NGsJZ1fFWuYtBrHkRPgu9fszZ6b/5vqNxLR/9ezO2JX0RyAPWBPgDGmGuArh23mTGGJdvjeGuxVdbpVDWIYc21rKOwEnxkP6vvz4J/WJ8Adn8LrT+GHEXsjk7dB7fvuSsiEcBYYBdQCYgGnjHGXEpzu4HAQIDg4OCqhw4dcmucviR1Wadc4RyMbFeeqsW1rKNuIiUFNo2DZSMgICO0eA8qdtXRv4e61Z67diT+SGA9UMcYs0FEPgbOG2P+71b30c3WXSNtWeeFZmW0rKPuzun9MH8IHNkAZVpC64+sKaHKo9wq8dtR448FYo0xGxzn5wDDbYjDZ92srDO8RRj5smlZR92lvCWh73ew/nNYPhI+qwEt/wfhHe2OTN0Ftyd+Y0yciBwRkTLGmN+Ah7HKPsoN9p28yIiFO1iz7zTlCufg0+6Vtayj7o+fP9QeCqWawbzBMKcf7FoILT+w2kEoj2XXrJ6hwAzHjJ4DQF+b4vAZl64mMWrFXiaujiEwgz9vti1PjxrF8ffT2qx6QPnLQP9lsPZjWPkfOLTmz92/lEdye43/fmiN//4ZY1i8/ThvLdpN3PkEOlcNYpiWdZSrnNhpjf7jfoUKXazN37PoJ0q7eFKNX7nJvpMXGLFw542yzmc9qlC1eG67w1LpWcHyMGAFRL0Pq/4LMaugzSgo/YjdkalUNPGnQ9fLOhOiYsiS0Z+RbcvTXcs6yl38M0DD4VC6Ocx/Er7sAhE9rYVfgTntjk6hiT9dSVvW6RIZxEvNtayjbFIkAgautLZ5XP0hHFgJbT6Bhx62OzKfp4k/ndh38gKvL9jJ2v2nKV9EyzrKQwRkgodft+b6zx8M0ztA1b5W07dM2e2Ozmdp4vdyF68m8cnyvUxYrWUd5cGCqsKgKFj5Fqz9FPYvh7afQWh9uyPzSZr4vZQxhkW/Huetxbs4cf4qXSKt3jp5tayjPFWGQGj2FoS1slb9TmkN1QdBkxGQMavd0fkUTfxeaO8Ja7bO9bLO5z2qallHeY/gmjB4DSz/F2wYA/uWWVs9Bte0OzKfoYnfi1y8msSo5dYirCwZ/RnZLpzu1YO1rKO8T8Ys1hz/sq2tmT8Tm0Otp6Dxa5Ahs93RpXua+L2AMYZvfz3O246yTtfIYrzUvIyWdZT3C6kLQ9bCsv+DdZ/C3h+s0X/Q39YcKSfSxO/h9p6wZuusO3Ca8KI5GN2zKlWCtayj0pFM2f5s8bBgKExoCnX+aa0FCNDBjSto4vdQqcs6WTMFaFlHpX8lG8OTa+H7V2D1B/D7Umv0XyTC7sjSHU38HiZtWeexasV48REt6ygfEZjTmuZZtg0sfBrGPwz1XoB6z1sbvyin0MTvQX4/cYERjrJOhaI5GdOzKpW1rKN8UelH4Kn18N0w+Pkd+G0xtBsDhcLtjixd0MTvAS5eTeLjH39n0pqDZM0UwNvtw3msmpZ1lI/LnBs6jLVG/4v+CWMbQsNhUOdZ8NfU9SD01bORMYaFvxzj30t2c/LC9bJOGHmy6kdapW4o2wqCa8GS52HFW7BnCbQfY+0DoO6LJn6b/H7iAq8v2MH6A2eoGJSTL3pFElEsl91hKeWZsuaFzpOt0f/i52FMPWvOf62nrJ3A1D3RxO9mqcs62QK1rKPUPQnvYM39X/SsNfd/zyJr5k/eknZH5lU08bvJ9bLO24t3E39RyzpK3bdsBaDrdNj+NSx5AUbXgSZvQPWB4Odnd3ReQRO/G/x+4gL/N38HG2Ksss7Yx7Wso9QDEYGKXSCkHnz7NCwdBru/hbafQp5Qu6PzeJr4XehCQiIf/7iXSWsPkj0wgH+3r0DXasW0rKOUs+QoDN1nw7YZsPRla/TfbCRE9rPeHNRNaeJ3gb+XdYJ56ZEy5NayjlLOJwKVe0JoA1g4FBY/B7sXQptPIVcxu6PzSLYVxETEX0S2isgiu2Jwhd/iLvDY2PU889U2CuUMZP6TdfhPhwqa9JVytVzFoNc8q+/PkU0wujZsmQbG2B2Zx7FzxP8MsBvIYWMMTnMhIZGPftzLZC3rKGUfEavMU7IxLPgHLPyHNfpvPcoqCynAphG/iAQBLYHxdhzfmYwxzN96lMbv/8zENTF0iSzGyucb0r2GTtFUyja5Q+DxhdDiPYiJgs9rwC+zdPTvYNeI/yPgJcCrd1v+Le4C/7dgBxtjzlApKCfjH4+kks7WUcoz+PlBjUHwUBNrq8d5A2HXAmj9kTUl1Ie5fcQvIq2Ak8aY6DvcbqCIbBaRzfHx8W6K7u5cSEhk5KJdPDoqit9PXOA/HSow78k6mvSV8kR5S0Lf76z9fvf9CJ/VgB1z7Y7KVmLc/NFHRP4D9AKSgECsGv9cY0zPW90nMjLSbN682U0R3poxhgXbjvH2kt2cuniVbtWDebGZztZRymvE/wbzBsOxLVCuHbT8wGoHkU6JSLQx5m/bmbk98f/l4CINgReMMa1udztPSPx74s7z+oKdN8o6I9uFUzEol60xKaXuQ3ISrP0YVv4HMuf6c/evdOhWiV/n8d/B+YREPlq2lynrDpIjMIB3OlSgS2Qx/PSLW6W8k3+AtbFL6ebW6H9WT6jQxdr8PUseu6NzC1sTvzHmJ+AnO2O4FWMM87cd5d9L9nDq4lW6Vw/mBS3rKJV+FCwPA1ZA1Puw6r8QswrajLI2gUnndMR/E3vizvP6/J1sPHiGSsVyMaF3pJZ1lEqP/DNYm7qXbm7N/PmyC0T0hOb/traBTKc08aeiZR2lfFSRCBj4E/z8Lqz+EA6shDafwEMP2x2ZS2ji58+yztuL93D6klXWefGRMuTKomUdpXxGQCZ4+HUo0xLmD4bpHaBqX6vpWyavXnL0Nz6f+HcfP8+IBX+WdSb20bKOUj4tqCoMioKVb8HaT2H/cmj7GYTWtzsyp/HZxH8+IZEPl/3O1HWHyBEYwLsdK9C5qpZ1lFJAhkBrwVdYK6v2P6U1VB8ETUZAxqx2R/fAfC7xG2OYt9WarXP60lV61LBm62hZRyn1N8E1YfAaWP4v2DAG9i2ztnoMrml3ZA/EpxL/7uPneX3BDjYdPEtEsVxM6lONCkHp95t7pZQTZMxizfEPawULnoSJza1N3hu/Bhky2x3dffGJxH8+IZEPfvidaesPkTNzBi3rKKXuXWg9GLLO2uR93aew9wdr9B/0t4WxHi9dJ35jDHO3HOU/32lZRynlBJmy/dniYcFQmNAU6vzTWgsQkMnu6O5auk78r8zbzsyNR7Sso5RyrpKN4cm18P0rsPoD+H2pNfovEmF3ZHfF1iZtd+t+m7RtPniGA/GX6FQ1SMs6SinX+P17WPg0XD4F9V6w+gAFeEZV4VZN2mzbc9cdIkPy0KWa1vKVUi5U+hF4aj2Ed4Sf34HxjeHETrujuq10nfiVUsotMueGDmOh6wy4EAdfNIBV/7NaQHsgTfxKKeUsZVvBkxusnytGWl/+xv9md1R/o4lfKaWcKWte6DwZOk2CswdhTD1YMwpSku2O7AZN/Eop5QrhHeCpDVCqqTX3f1ILOL3f7qgATfxKKeU62QpA1+nQYRzE74HRdWD9GEhJsTUsTfxKKeVKIlCxi1X7D60HS4dZTd/OxNgWkiZ+pZRyhxyFoftsq8Vz3K/W6H/TBLBhLZUmfqWUchcRqNwThqyFYtVh8XMwrR38ccStYWjiV0opd8tVDHrNs/r+HNkEo2vDlmluG/1r4ldKKTuIQGQ/q+dP4Uqw8B/WZu/nj7v80G5P/CJSTERWishuEdkpIs+4OwallPIYuUPg8YXQ4j2IiYLPa8Avs1w6+rdjxJ8EPG+MKQvUBJ4SkXI2xKGUUp7Bzw9qDIIhayB/GMwbCF/1gIsnXXM4lzzqbRhjjhtjtjj+fQHYDRR1dxxKKeVx8paEvt9Z+/3u+xE+q2F9CnAyW2v8IhICVAY23OS6gSKyWUQ2x8fHuz02pZSyhZ8/1B4Kg6Os/v55Sjj9ELb14xeRbMDPwNvGmLm3u+399uNXSilf5lH9+EUkA/ANMONOSV8ppZRz2TGrR4AJwG5jzAfuPr5SSvk6O0b8dYBeQGMR2eY4PWpDHEop5ZPcvtm6MWY1oHshKqWUTXTlrlJK+RhN/Eop5WM08SullI/RxK+UUj7GtgVc90JE4oFDdsfxgPIBp+wOwoPo6/EnfS3+Sl+Pv3qQ16O4MSZ/2gu9IvGnByKy+WYr6HyVvh5/0tfir/T1+CtXvB5a6lFKKR+jiV8ppXyMJn73GWt3AB5GX48/6WvxV/p6/JXTXw+t8SullI/REb9SSvkYTfxKKeVjNPG7mG4u/3ci4i8iW0Vkkd2x2E1EconIHBHZ4/gdqWV3THYRkWcdfyM7RGSmiATaHZM7ichEETkpIjtSXZZHRJaJyF7Hz9zOOJYmftfTzeX/7hmsvZYVfAwsNcaEAZXw0ddFRIoCTwORxphwwB94zN6o3G4y0DzNZcOB5caYUsByx/kHponfxXRz+b8SkSCgJTDe7ljsJiI5gPpYGxNhjLlmjPnD1qDsFQBkFpEAIAtwzOZ43MoYswo4k+bitsAUx7+nAO2ccSxN/G50u83lfchHwEtAis1xeIISQDwwyVH6Gi8iWe0Oyg7GmKPA/4DDwHHgnDHmB3uj8ggFjTHHwRpEAgWc8aCa+N3Esbn8N8A/jTHn7Y7HDiLSCjhpjIm2OxYPEQBUAUYbYyoDl3DSR3lv46hdtwVCgSJAVhHpaW9U6ZcmfjfQzeVvqAO0EZGDwFdY229OtzckW8UCscaY658A52C9EfiiJkCMMSbeGJMIzAVq2xyTJzghIoUBHD9POuNBNfG7mG4u/ydjzMvGmCBjTAjWF3crjDE+O6ozxsQBR0SkjOOih4FdNoZkp8NATRHJ4vibeRgf/aI7jYVAb8e/ewMLnPGgbt9z1wdd31x+u4hsc1z2ijFmiX0hKQ8yFJghIhmBA0Bfm+OxhTFmg4jMAbZgzYTbio+1bhCRmUBDIJ+IxAIjgHeA2SLSH+vNsbNTjqUtG5RSyrdoqUcppXyMJn6llPIxmviVUsrHaOJXSikfo4lfKaV8jCZ+5fMcHVRjRCSP43xux/nit7h9exExIhJ2F48dKSKjnB2zUg9Cp3MqBYjIS8BDxpiBIvIFcNAY859b3HY2UBira+IbbgxTKafQEb9Slg+xVo7+E6gLvH+zGzl6LtUB+pOqbbDjU8CPYiksIr+LSCERaXh93wERaSAi2xynrSKS3eXPSqmb0MSvFODoD/Mi1hvAP40x125x03ZY/fN/B86ISBXH/ecBccBTwDhghKMlQ2ovAE8ZYyKAesAVZz8Ppe6GJn6l/tQCqyVw+G1u0w2rwRyOn91SXTcUeBm4aoyZeZP7rgE+EJGngVzGmKQHD1mpe6e9epQCRCQCaIq1S9pqEfnqeh/0VLfJCzQGwkXEYO0SZUTkJWN9WVYUa5+BgiLiZ4z5y54Dxph3RGQx8CiwXkSaGGP2uPzJKZWGjviVz3N0gxyNVeI5DPwXa1OQtDoBU40xxY0xIcaYYkAMUNexa9QkoDtWV8nnbnKcksaY7caYd4HNwB1nBSnlCpr4lYIBwGFjzDLH+c+BMBFpkOZ23YB5aS77BivZvwJEGWOisJL+EyJSNs1t/+nYSPwXrPr+d858EkrdLZ3OqZRSPkZH/Eop5WM08SullI/RxK+UUj5GE79SSvkYTfxKKeVjNPErpZSP0cSvlFI+5v8B85ABQjKbgREAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#consider the same example.\n",
+ "plt.plot(x1,y1, label='First') \n",
+ "plt.plot(x2,y2, label= 'Second')\n",
+ "plt.title(\"DEMO GRAPH\") #Adds Title to the Plot\n",
+ "plt.ylabel('Y Axis') # labels y axis\n",
+ "plt.xlabel('X Axis') # labels x axis\n",
+ "plt.legend() #The labelling of individual plots wouldn't shwo up in graph unless we use this command\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "49bb4d19",
+ "metadata": {},
+ "source": [
+ "Just like this we can pot other types of graphs also. They can be executed using different comands which are easily available in metplotlib documentation online along with the type of arguments they take to plot the data."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e6e0c19b",
+ "metadata": {},
+ "source": [
+ "For example we can plor scatter of the same data as follows:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "f3ed11f1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAOgUlEQVR4nO3df2jc933H8ddrkkrPWWul+NJVVpjTUbQN4+Fyf6QNdKNqUKD54T82k0CG1wX8z6izsimLVkhK/iqoLG0YdJg0TaDBxXia25SuinFXwiALyFZquXG0QJvaktz6QpA3uoMo7nt/3Mm2zpZ1d9+v9L2P9Xz8c7rPne/75kv8zNff+57OESEAQHp+p+gBAACdIeAAkCgCDgCJIuAAkCgCDgCJ6t3IjW3bti127NixkZsEgOSdOHHinYgoN69vaMB37NihqampjdwkACTP9i+vt84pFABIFAEHgEQRcABIFAEHgEQRcABI1IZehZK0U4el409JF+ekrYPS8BPSrr1FTwWgyx2dntf45KwWFmsa6C9pdGRIe3Zvz+W1CXgrTh2WXjogLdXq9y+eq9+XiDiAVR2dntfYxIxqS5ckSfOLNY1NzEhSLhHnFEorjj91Jd7Llmr1dQBYxfjk7OV4L6stXdL45Gwur0/AW3Fxrr11AJC0sFhra71dBLwVWwfbWwcASQP9pbbW20XAWzH8hNTXtMP7SvV1AFjF6MiQSn09K9ZKfT0aHRnK5fV5E7MVy29UchUKgDYsv1G5XleheCO/E7NSqQS/zAoA2mP7RERUmtc5hQIAiSLgAJAoAg4AiSLgAJAoAg4AiSLgAJAoAg4AiVoz4Lafs33B9unrPPb3tsP2tvUZDwCwmlaOwJ+XdE/zou3bJd0t6WzOMwEAWrBmwCPiFUnvXuehpyU9JmnjPsoJALiso3Pgtu+XNB8RP23hufttT9meqlarnWwOAHAdbQfc9hZJX5bU0q/ii4iDEVGJiEq5XG53cwCAVXRyBP4Hku6Q9FPbb0salHTS9u/lORgA4Mba/nWyETEj6bbl+42IVyLinRznAgCsoZXLCA9JelXSkO0524+s/1gAgLWseQQeEQ+t8fiO3KYBALSMT2ICQKIIOAAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAkas2A237O9gXbp69aG7f9pu1Ttv/Ndv+6TgkAuEYrR+DPS7qnae2YpJ0RsUvSf0say3kuAMAa1gx4RLwi6d2mtZcj4v3G3f+SNLgOswEAbiCPc+B/LenfV3vQ9n7bU7anqtVqDpsDAEgZA277y5Lel/Tias+JiIMRUYmISrlczrI5AMBVejv9g7b3SbpX0nBERH4jAQBa0VHAbd8j6R8k/WlE/F++IwEAWtHKZYSHJL0qacj2nO1HJP2zpA9JOmb7ddv/ss5zAgCarHkEHhEPXWf5W+swCwCgDXwSEwASRcABIFEEHAASRcABIFEEHAASRcABIFEdfxITQN3R6XmNT85qYbGmgf6SRkeGtGf39qLHwiZAwIEMjk7Pa2xiRrWlS5Kk+cWaxiZmJImIY91xCgXIYHxy9nK8l9WWLml8cragibCZEHAgg4XFWlvrQJ4IOJDBQH+prXUgTwQcyGB0ZEilvp4Va6W+Ho2ODBU0ETYT3sQEMlh+o5KrUFAEAg5ktGf3doKNQnAKBQASRcABIFEEHAASRcABIFEEHAASRcABIFEEHAAStWbAbT9n+4Lt01etfcT2MdtvNW5vXd8xAQDNWjkCf17SPU1rj0s6HhGfkHS8cR8AsIHWDHhEvCLp3ablByS90Pj5BUl78h0LALCWTs+BfzQizktS4/a21Z5oe7/tKdtT1Wq1w80BAJqt+5uYEXEwIioRUSmXy+u9OQDYNDoN+K9tf0ySGrcX8hsJANCKTgP+fUn7Gj/vk/S9fMYBALSqlcsID0l6VdKQ7Tnbj0j6qqS7bb8l6e7GfQDABlrz94FHxEOrPDSc8ywAgDbwSUwASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEZQq47S/Z/pnt07YP2f5gXoMByTh1WHp6p/SV/vrtqcNFT4RNouOA294u6YCkSkTslNQj6cG8BgOScOqw9NIB6eI5SVG/fekAEceGyHoKpVdSyXavpC2SFrKPBCTk+FPSUm3l2lKtvg6ss44DHhHzkr4m6ayk85IuRsTLzc+zvd/2lO2parXa+aRAN7o41946kKMsp1BulfSApDskDUi6xfbDzc+LiIMRUYmISrlc7nxSoBttHWxvHchRllMon5P0i4ioRsSSpAlJn85nLCARw09IfaWVa32l+jqwzrIE/KykO21vsW1Jw5LO5DMWkIhde6X7npG23i7J9dv7nqmvA+ust9M/GBGv2T4i6aSk9yVNSzqY12BAMnbtJdgoRMcBl6SIeFLSkznNAgBoA5/EBIBEEXAASBQBB4BEEXAASBQBB4BEEXAASFSmywixeR2dntf45KwWFmsa6C9pdGRIe3ZvL3osYFMh4Gjb0el5jU3MqLZ0SZI0v1jT2MSMJBFxYANxCgVtG5+cvRzvZbWlSxqfnC1oImBzIuBo28Jira11AOuDgKNtA/2lttYBrA8CjraNjgyp1NezYq3U16PRkaGCJgI2J97ERNuW36jkKhSgWAQcHdmzezvBBgrGKRQASBQBB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASFSmgNvut33E9pu2z9j+VF6DAQBuLOsHeb4h6UcR8ee2PyBpSw4zAQBa0HHAbX9Y0mck/ZUkRcR7kt7LZywAwFqynEL5uKSqpG/bnrb9rO1bmp9ke7/tKdtT1Wo1w+YAAFfLEvBeSZ+U9M2I2C3pN5Ieb35SRByMiEpEVMrlcobNAQCuliXgc5LmIuK1xv0jqgcdALABOg54RPxK0jnby78EeljSG7lMBQBYU9arUL4o6cXGFSg/l/SF7CMBAFqRKeAR8bqkSj6jAADawScxASBRBBwAEkXAASBRBBwAEkXAASBRBBwAEkXAASBRBBwAEkXAASBRBBwAEkXAASBRBBwAEkXAASBRBBwAEkXAASBRBBwAEkXAASBRBBwAEkXAASBRBBwAEkXAASBRmQNuu8f2tO0f5DEQAKA1eRyBPyrpTA6vAwBoQ6aA2x6U9HlJz+YzDgCgVVmPwL8u6TFJv80+CgCgHR0H3Pa9ki5ExIk1nrff9pTtqWq12unmAABNshyB3yXpfttvS/qupM/a/k7zkyLiYERUIqJSLpczbA4AcLWOAx4RYxExGBE7JD0o6ccR8XBukwEAbojrwAEgUb15vEhE/ETST/J4LQBAazgCB4BEEXAASBQBB4BEEXAASBQBB4BEEXAASBQBB4BE5XId+Ho6Oj2v8clZLSzWNNBf0ujIkPbs3l70WABQuK4O+NHpeY1NzKi2dEmSNL9Y09jEjCQRcQCbXlefQhmfnL0c72W1pUsan5wtaCIA6B5dHfCFxVpb6wCwmXR1wAf6S22tA8Bm0tUBHx0ZUqmvZ8Vaqa9HoyNDBU0EAN2jq9/EXH6jkqtQAOBaXR1wqR5xgg0A1+rqUygAgNURcABIFAEHgEQRcABIFAEHgEQRcABIFAEHgER1HHDbt9v+D9tnbP/M9qN5DgYAN4VTh6Wnd0pf6a/fnjqc20tn+SDP+5L+LiJO2v6QpBO2j0XEGznNBgBpO3VYeumAtNT4BXwXz9XvS9KuvZlfvuMj8Ig4HxEnGz//r6QzkvjIJAAsO/7UlXgvW6rV13OQyzlw2zsk7Zb02nUe2297yvZUtVrNY3MAkIaLc+2ttylzwG3/rqR/lfS3EfE/zY9HxMGIqEREpVwuZ90cAKRj62B7623KFHDbfarH+8WImMhlIgC4WQw/IfU1fX9BX6m+noMsV6FY0rcknYmIf8plGgC4mezaK933jLT1dkmu3973TC5vYErZrkK5S9JfSpqx/Xpj7R8j4oeZpwKAm8WuvbkFu1nHAY+I/5TkHGcBALSBT2ICQKIIOAAkioADQKIIOAAkyhGxcRuzq5J+uWEbXB/bJL1T9BBdhP1xBftiJfbHSln2x+9HxDWfhNzQgN8MbE9FRKXoOboF++MK9sVK7I+V1mN/cAoFABJFwAEgUQS8fQeLHqDLsD+uYF+sxP5YKff9wTlwAEgUR+AAkCgCDgCJIuAt4kucr2W7x/a07R8UPUvRbPfbPmL7zcZ/I58qeqai2P5S4+/IaduHbH+w6Jk2ku3nbF+wffqqtY/YPmb7rcbtrXlsi4C3bvlLnP9I0p2S/sb2Hxc8U9EeVf27UCF9Q9KPIuIPJf2JNul+sb1d0gFJlYjYKalH0oPFTrXhnpd0T9Pa45KOR8QnJB1v3M+MgLeIL3FeyfagpM9LerboWYpm+8OSPqP6F5woIt6LiMVChypWr6SS7V5JWyQtFDzPhoqIVyS927T8gKQXGj+/IGlPHtsi4B240Zc4byJfl/SYpN8WPEc3+LikqqRvN04pPWv7lqKHKkJEzEv6mqSzks5LuhgRLxc7VVf4aEScl+oHg5Juy+NFCXib1voS583A9r2SLkTEiaJn6RK9kj4p6ZsRsVvSb5TTP5FT0zi3+4CkOyQNSLrF9sPFTnXzIuBt4EucL7tL0v2235b0XUmftf2dYkcq1JykuYhY/hfZEdWDvhl9TtIvIqIaEUuSJiR9uuCZusGvbX9Mkhq3F/J4UQLeIr7E+YqIGIuIwYjYofobVD+OiE17lBURv5J0zvZQY2lY0hsFjlSks5LutL2l8XdmWJv0Dd0m35e0r/HzPknfy+NFs3yp8WbDlzjjRr4o6UXbH5D0c0lfKHieQkTEa7aPSDqp+pVb09pkH6m3fUjSn0naZntO0pOSvirpsO1HVP+f3F/ksi0+Sg8AaeIUCgAkioADQKIIOAAkioADQKIIOAAkioADQKIIOAAk6v8BE0uvwlE7yRkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(x1,y1)\n",
+ "plt.scatter(x2,y2)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7e839813",
+ "metadata": {},
+ "source": [
+ "Similarly we can change the styles of plots using **style** from metplotlib library. Different types of styes and their commands are available in metplotlib library."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eaadfca8",
+ "metadata": {},
+ "source": [
+ "*for example:*we can change style of the graph using **ggplot** as follows"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "f51ca17c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAASR0lEQVR4nO3dX2hT5x/H8U9szKZmrW1PXRb/IN0qw6EdY07ZcBYNY4yJXpWtdSBDhlYQa3GKGw71YmWstggtCgMdo7vwQtspepPJ9MKb2jLp1KlsKkLJ1tg6G62tMfld6K9dtLVNctLTZ32/7vI0yfnmS/349MlzznHF4/G4AADGmeR0AQCA1BDgAGAoAhwADEWAA4ChCHAAMBQBDgCGco/1ATs6Osb6kLayLEvhcNjpMsYN+jGIXiSiH4nS6Yff7x9ynBk4ABiKAAcAQxHgAGAoAhwADEWAA4ChxnwXiqlCkX41ng8rEu2Q1y2VF1vyeT1OlwVgnIt1hqTmRnXd7VFs2gvSqnJNKvDZ8t4E+CiEIv366uebCkUeDIxdCfdq14rZhDiAYcU6Q4rX7pQ6QxpIjz8vK1a525YQZwllFBrPhxPCW5JCkQdqPM8eVwDP0NwodYYSxx7PyO1AgI9C970HQ4/3Dj0OAJIUv92V1HiyCPBRyJ06eejxKUOPA4AkuabnJTWeLAJ8FB59YZkY1j7vZJUXWw5VBMAIq8qlJ9e6C3yPxm3Al5ij4PN6tGvF7Me7UFzyuuPsQgEwokkFPsUqd0vNjXLf7VGUXSjO8Hk9qnrHzwV6ACRlUoFPWlelvAxkB0soAGAoAhwADEWAA4ChCHAAMBQBDgCGIsABwFAEOAAYasQAb2ho0Lp161RVVfXUz3766SeVlpbqzp07GSkOADC8EQO8pKREO3bseGo8HA6rvb1dlsXp5ADghBEDfP78+fJ6vU+Nf//99yovL5fL5cpIYQCAZ0vpVPpz584pLy9Pc+fOHfG5wWBQwWBQklRdXW38jN3tdhv/GexEPwbRi0T0I1Em+pF0gPf19enIkSP68ssvR/X8QCCgQCAw8Nj064hwLZRE9GMQvUhEPxKl0w+/3z/keNK7UP766y/9/fff2rp1qzZu3Khbt25p27Ztun37dkqFAQBSk/QMfM6cOfruu+8GHm/cuFFff/21srOzbS0MAPBsIwZ4XV2dLl68qJ6eHq1fv16lpaVavnz5WNQGAHiGEQN88+bNz/x5fX29XbUAAJLAmZgAYCgCHAAMRYADgKEIcAAwFAEOAIYiwAHAUAQ4ABiKAAcAQxHgAGAoAhwADEWAA4ChCHAAMBQBDgCGIsABwFAEOAAYigAHAEMR4ABgKAIcAAxFgAOAoQhwADAUAQ4AhiLAAcBQ7pGe0NDQoLa2NuXk5KimpkaS9MMPP6i1tVVut1svvviiKioqNG3atIwXCwAYNOIMvKSkRDt27EgYW7hwoWpqavTtt9/qpZde0tGjRzNWIABgaCMG+Pz58+X1ehPGiouLlZWVJUmaN2+eurq6MlMdAGBYIy6hjOTUqVN6++23h/15MBhUMBiUJFVXV8uyrHQP6Si32238Z7AT/RhELxLRj0SZ6EdaAX7kyBFlZWVp6dKlwz4nEAgoEAgMPA6Hw+kc0nGWZRn/GexEPwbRi0T0I1E6/fD7/UOOp7wL5ZdfflFra6s2bdokl8uV6tsAAFKUUoD/+uuvam5u1rZt2/Tcc8/ZXRMAYBRGXEKpq6vTxYsX1dPTo/Xr16u0tFRHjx5VNBrVnj17JElFRUX67LPPMl4sAGDQiAG+efPmp8aWL1+eiVoAAEngTEwAMBQBDgCGIsABwFAEOAAYigAHAEMR4ABgqLSvhQJMdLHOkNTcqK67PYpNe0FaVa5JBT6ny8IEQIADaYh1hhSv3Sl1hvTg/4N/XlascjchjoxjCQVIR3Oj1BlKHHs8IwcyjQAH0hC/PfS18IcbB+xEgANpcE3PS2ocsBMBDqRjVbn05Fp3ge/ROJBhfIkJpGFSgU+xyt1Sc6Pcd3sUZRcKxhABDqRpUoFPWlelPO5AgzHGEgoAGIoABwBDEeAAYCgCHAAMRYADgKEIcAAwFAEOAIYacR94Q0OD2tralJOTo5qaGklSJBJRbW2tOjs7VVBQoMrKSnm93owXCwAYNOIMvKSkRDt27EgYa2pq0oIFC7Rv3z4tWLBATU1NmaoPADCMEQN8/vz5T82uW1patGzZMknSsmXL1NLSkpnqAADDSulU+n/++Ue5ubmSpNzcXN25c2fY5waDQQWDQUlSdXW1LMtK5ZDjhtvtNv4z2Il+DKIXiehHokz0I+PXQgkEAgoEAgOPTb9WhMX1LhLQj0H0IhH9SJROP/x+/5DjKe1CycnJUXd3tySpu7tb2dnZKRUFAEhdSgH+5ptv6vTp05Kk06dPa9GiRbYWBQAY2YhLKHV1dbp48aJ6enq0fv16lZaWavXq1aqtrdWpU6dkWZa2bNkyFrUCAP5lxADfvHnzkOM7d+60uxYAQBI4ExMADEWAA4ChCHAAMBQBDgCGIsABwFAEOAAYigAHAEMR4ABgKAIcAAxFgAOAoQhwADAUAQ4AhiLAAcBQBDgAGIoABwBDEeAAYCgCHAAMRYADgKEIcAAwFAEOAIYiwAHAUAQ4ABjKnc6Ljx8/rlOnTsnlcmn27NmqqKiQx+OxqzbACKFIvxrPhxWJdsjrlsqLLfm8/DtA5qUc4F1dXTp58qRqa2vl8Xi0d+9enT17ViUlJTaWB4xvoUi/vvr5pkKRBwNjV8K92rViNiGOjEtrCSUWi6m/v18PHz5Uf3+/cnNz7aoLMELj+XBCeEtSKPJAjefDDlWEiSTlGXheXp5WrlypDRs2yOPxqLi4WMXFxU89LxgMKhgMSpKqq6tlWVbq1Y4Dbrfb+M9gp4nej0i0Y5hx14Tui8TvxpMy0Y+UAzwSiailpUX19fWaOnWq9u7dqzNnzujdd99NeF4gEFAgEBh4HA6bPTOxLMv4z2Cnid4P7zD/grzu+ITui8TvxpPS6Yff7x9yPOUllPb2ds2YMUPZ2dlyu91avHixrly5kurbAUZ69IXl5IQxn3eyyouZeSLzUp6BW5alq1evqq+vTx6PR+3t7Xr55ZftrA0Y93xej3atmP14F4pLXnecXSgYMykHeFFRkZYsWaJt27YpKytLc+fOTVgqASYKn9ejqnf8LBlgzKW1D7y0tFSlpaV21QIASAJnYgKAoQhwADAUAQ4AhiLAAcBQBDgAGIoABwBDpbWNEBNXrDMkNTeq626PYtNekFaVa1KBz+mygAmFAEfSYp0hxWt3Sp0hDVyH78/LilXuJsSBMcQSCpLX3Ch1hhLHHs/IAYwdAhxJi9/uSmocQGYQ4Eiaa3peUuMAMoMAR/JWlUtPrnUX+B6NAxgzfImJpE0q8ClWuVtqbpT7bo+i7EIBHEGAIyWTCnzSuirlcQlVwDEsoQCAoQhwADAUAQ4AhiLAAcBQBDgAGIoABwBDEeAAYKi09oHfvXtX+/fv182bN+VyubRhwwbNmzfPrtoAAM+QVoAfPHhQr7/+uqqqqhSNRtXX12dXXQCAEaS8hHLv3j1dunRJy5cvlyS53W5NmzbNtsIAAM/misfj8VReeP36dR04cECzZs3SjRs3VFhYqLVr1+r5559PeF4wGFQwGJQkVVdXq7+/P/2qHeR2uxWNRp0uY9ygH4PoRSL6kSidfng8niHHUw7wP/74Q1988YX27NmjoqIiHTx4UFOmTNFHH330zNd1dHSkcrhxw+LaHwnoxyB6kYh+JEqnH36/f8jxlJdQ8vPzlZ+fr6KiIknSkiVLdO3atVTfDgCQpJQDfPr06crPzx+YUbe3t2vWrFm2FQYAeLa0dqF8+umn2rdvn6LRqGbMmKGKigq76gIAjCCtAJ87d66qq6vtqgUAkATOxAQAQxHgAGAoAhwADEWAA4ChCHAAMBQBDgCGIsABwFAEOAAYigAHAEMR4ABgKAIcAAxFgAOAoQhwADAUAQ4AhiLAAcBQBDgAGIoABwBDEeAAYCgCHAAMRYADgKEIcAAwVNoBHovF9Pnnn3N3egAYY2kH+IkTJzRz5kw7agEAJCGtAL9165ba2tq0YsUKu+oBAIxSWgF+6NAhrVmzRi6Xy656AACj5E71ha2trcrJyVFhYaEuXLgw7POCwaCCwaAkqbq6WpZlpXrIccHtdhv/GexEPwbRi0T0I1Em+uGKx+PxVF74448/6syZM8rKylJ/f796e3v11ltvadOmTc98XUdHR0qFjheWZSkcDjtdxrhBPwbRi0T0I1E6/fD7/UOOpzwDLysrU1lZmSTpwoULOnbs2IjhDQCwD/vAAcBQKc/A/+21117Ta6+9ZsdbAQBGiRk4ABiKAAcAQxHgAGAoAhwADEWAA4ChCHAAMBQBDgCGsmUfeCbFOkNSc6Pit7vkmp4nrSrXpAKf02UBgOPGdYDHOkOK1+6UOkOSpLgk/XlZscrdhDiACW98L6E0Nw6E94DHM3IAmOjGdYDHb3clNQ4AE8m4DnDX9LykxgFgIhnXAa5V5dKTa90FvkfjADDBjesvMScV+BSr3M0uFAAYwrgOcOlRiGtdldNlAMC4M76XUAAAwyLAAcBQBDgAGIoABwBDEeAAYCgCHAAMRYADgKFS3gceDodVX1+v27dvy+VyKRAI6IMPPrCzNgAwXijSr8bzYUWiHfK6pfJiSz6vx5b3TjnAs7Ky9Mknn6iwsFC9vb3avn27Fi5cqFmzZtlSGACYLhTp11c/31Qo8mBg7Eq4V7tWzLYlxFNeQsnNzVVhYaEkacqUKZo5c6a6urhKIAD8X+P5cEJ4S1Io8kCN58O2vL8tp9L//fffunbtml555ZWnfhYMBhUMBiVJ1dXVsizLjkM6xu12G/8Z7EQ/BtGLRPRDikQ7hhl32dKbtAP8/v37qqmp0dq1azV16tSnfh4IBBQIBAYeh8P2/M/jFMuyjP8MdqIfg+hFIvoheYdJWK87nlRv/H7/kONp7UKJRqOqqanR0qVLtXjx4nTeCgD+cx59YTk5YcznnazyYnv+Mkl5Bh6Px7V//37NnDlTH374oS3FAMB/ic/r0a4Vsx/vQnHJ646Pj10oly9f1pkzZzRnzhxt3bpVkvTxxx/rjTfesKUwAPgv8Hk9qnrHn5ElpZQD/NVXX9Xhw4ftrAUAkATOxAQAQxHgAGAoAhwADEWAA4ChXPF4PO50EQCA5DEDT9L27dudLmFcoR+D6EUi+pEoE/0gwAHAUAQ4ABiKAE/Svy/MBfrxb/QiEf1IlIl+8CUmABiKGTgAGIoABwBD2XJHnomAmzg/LRaLafv27crLy5vwW8bu3r2r/fv36+bNm3K5XNqwYYPmzZvndFmOOH78uE6dOiWXy6XZs2eroqJCHo89l081QUNDg9ra2pSTk6OamhpJUiQSUW1trTo7O1VQUKDKykp5vd60j0WAjxI3cX7aiRMnNHPmTPX29jpdiuMOHjyo119/XVVVVYpGo+rr63O6JEd0dXXp5MmTqq2tlcfj0d69e3X27FmVlJQ4XdqYKSkp0fvvv6/6+vqBsaamJi1YsECrV69WU1OTmpqatGbNmrSPxRLKKHET50S3bt1SW1ubVqxY4XQpjrt3754uXbqk5cuXS3p0L8hp06Y5XJVzYrGY+vv79fDhQ/X39ys3N9fpksbU/Pnzn5pdt7S0aNmyZZKkZcuWqaWlxZZjMQNPwbNu4jxRHDp0SGvWrGH2rUe/D9nZ2WpoaNCNGzdUWFiotWvX6vnnn3e6tDGXl5enlStXasOGDfJ4PCouLlZxcbHTZTnun3/+GfiPLDc3V3fu3LHlfZmBJ2mkmzhPBK2trcrJyRn4i2Sie/jwoa5du6b33ntP33zzjZ577jk1NTU5XZYjIpGIWlpaVF9frwMHDuj+/fs6c+aM02X9ZxHgSeAmzo9cvnxZ586d08aNG1VXV6fffvtN+/btc7osx+Tn5ys/P19FRUWSpCVLlujatWsOV+WM9vZ2zZgxQ9nZ2XK73Vq8eLGuXLnidFmOy8nJUXd3tySpu7tb2dnZtrwvSyijxE2cB5WVlamsrEySdOHCBR07dkybNm1yuCrnTJ8+Xfn5+ero6JDf71d7e/uE/XLbsixdvXpVfX198ng8am9v18svv+x0WY578803dfr0aa1evVqnT5/WokWLbHlfzsQcpd9//107d+7UnDlz5HK5JHETZ2kwwCf6NsLr169r//79ikajmjFjhioqKmzZJmaiw4cP6+zZs8rKytLcuXO1fv16TZ482emyxkxdXZ0uXryonp4e5eTkqLS0VIsWLVJtba3C4bAsy9KWLVts+f0gwAHAUKyBA4ChCHAAMBQBDgCGIsABwFAEOAAYigAHAEMR4ABgqP8BiIEhR5MU4EwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "