-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathsemi_enc_dec.py
226 lines (190 loc) · 8.43 KB
/
semi_enc_dec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import copy
import attr
import logging
import collections
import torch
import higher
from torch import nn
import torch.utils.data
from entmax import sparsemax
from tensor2struct.utils import registry
from tensor2struct.models import enc_dec
from tensor2struct.datasets import overnight
from experiments.semi_sup import unsup_enc_dec
logger = logging.getLogger("tensor2struct")
@registry.register("model", "SemiSupEncDec")
class SemiSupEncDecModel(unsup_enc_dec.UnSupEncDecModel):
"""
Scheduler to collect pseudo labels, see test case for usage
"""
def __init__(
self, preproc, device, encoder, decoder, search_scheduler, unsup_config
):
super().__init__(preproc, device, encoder, decoder, search_scheduler)
# unsupervised loss config
self.enable_unsup_loss = unsup_config["enable_unsup_loss"]
self.alpha = unsup_config["alpha"]
self.unsup_loss_type = unsup_config["unsup_loss_type"]
self.eps = 1e-6
def forward(self, *input_items, compute_loss=True, infer=False):
"The only entry point of encdec"
ret_dic = {}
if compute_loss:
batch = input_items[0]
unlabel_batch = None if len(input_items) == 1 else input_items[1]
loss = self._compute_loss_enc_batched(batch, unlabel_batch)
ret_dic["loss"] = loss
if unlabel_batch:
summary = self._summarize(self.debug_stat)
logger.info(f"Global stat: {summary}")
ret_dic["summary"] = summary
if infer:
len(input_items) == 2 # unbatched version of inference
orig_item, preproc_item = input_items
infer_dic = self.begin_inference(orig_item, preproc_item)
ret_dic = {**ret_dic, **infer_dic}
return ret_dic
def _compute_loss_enc_batched(self, batch, unlabel_batch=None):
"""
Compute supervised loss for batch and unsupervised loss for unlabel batch
"""
if batch:
sup_loss = super(
unsup_enc_dec.UnSupEncDecModel, self
)._compute_loss_enc_batched(batch)
else:
assert self.enable_unsup_loss and unlabel_batch is not None
sup_loss = None
# eval on train set
if not self.training or not self.enable_unsup_loss or unlabel_batch is None:
return sup_loss
assert self.unsup_loss_type != "gradsim"
unsup_loss = self.compute_unsup_loss_by_beam_search(
unlabel_batch, self.unsup_loss_type
)
if sup_loss:
return self.alpha * unsup_loss + sup_loss
else:
return self.alpha * unsup_loss
def compute_unsup_loss_by_beam_search(self, batch, unsup_loss_type="topk"):
"""
Compute unsup loss using beam search
s1, s2: beam search retrieved programs
s1, s3: plausible/executable programs
"""
losses = []
for enc_item, dec_item in batch:
example = unsup_enc_dec.Example(dec_item["domain"])
# obtain seqs in eval mode
# with torch.no_grad():
# self.eval()
# sampled_seqs, sampled_seq_log_probs = self.get_executable_seqs(
# example, (enc_input, _dec_output)
# )
# self.train()
# obtain seqs in train mode, more efficient
s1_seqs, s1_log_probs, s2_log_probs = self.get_executable_seqs(
example, (enc_item, dec_item)
)
assert len(s1_seqs) == len(s1_log_probs)
if len(s1_log_probs) > 0 and len(s2_log_probs) > 0:
s1_log_prob = torch.logsumexp(torch.stack(s1_log_probs, dim=0), dim=0)
s2_log_prob = torch.logsumexp(torch.stack(s2_log_probs, dim=0), dim=0)
s1s2_log_prob = torch.logsumexp(
torch.stack([s1_log_prob, s2_log_prob], dim=0), dim=0
)
s3s4_log_prob = torch.log(1 - torch.exp(s1s2_log_prob))
# compute different q
l0 = -s1_log_probs[0]
l1 = -s1_log_prob
s1_34_logits = [s1_log_prob, s3s4_log_prob]
s1_34_log_p_v = torch.stack(s1_34_logits, dim=0)
q_l2 = torch.softmax(s1_34_log_p_v.detach(), dim=0)
l2 = (-q_l2 * s1_34_log_p_v).sum()
q_l3 = torch.exp(s1s2_log_prob.detach())
l3 = -q_l3 * s1_log_prob - (1 - q_l3) * s3s4_log_prob
if self.unsup_loss_type == "self-train":
losses.append(l0)
elif self.unsup_loss_type == "top-k":
losses.append(l1)
elif self.unsup_loss_type == "repulsion":
losses.append(l2)
elif self.unsup_loss_type == "gentle":
losses.append(l3)
elif self.unsup_loss_type == "sparse":
l5_logits = torch.stack(s1_log_probs, dim=0)
q_l5 = sparsemax(l5_logits.detach(), dim=0)
l5 = (-q_l5 * l5_logits).sum()
losses.append(l5)
else:
raise NotImplementedError
elif len(s1_log_probs) == 0 and len(s2_log_probs) > 0:
s2_log_prob = torch.logsumexp(torch.stack(s2_log_probs, dim=0), dim=0)
s3s4_log_prob = torch.log(1 - torch.exp(s2_log_prob))
l2 = -s3s4_log_prob
losses.append(l2) # which means this is the only valid loss
elif len(s1_log_probs) > 0 and len(s2_log_probs) == 0:
s1_log_prob = torch.logsumexp(torch.stack(s1_log_probs, dim=0), dim=0)
s3s4_log_prob = torch.log(1 - torch.exp(s1_log_prob))
l0 = -s1_log_probs[0]
l1 = -s1_log_prob
if self.unsup_loss_type == "self-train":
losses.append(l0)
elif self.unsup_loss_type == "top-k":
losses.append(l1)
elif self.unsup_loss_type == "replusion":
# l2, l3 loss would result in zero gradient
continue
elif self.unsup_loss_type == "gentle":
continue
elif self.unsup_loss_type == "sparse":
l5_logits = torch.stack(s1_log_probs, dim=0)
q_l5 = sparsemax(l5_logits.detach(), dim=0)
l5 = (-q_l5 * l5_logits).sum()
losses.append(l5)
else:
raise NotImplementedError
else:
logger.warn("semi_enc_dec obtains empty seqs from searching")
continue
if len(losses) == 0:
return torch.Tensor([1]).to(self._device).requires_grad_()
return torch.mean(torch.stack(losses, dim=0), dim=0)
def collect_seq_and_orig_losses(self, batch):
seqs = []
losses = []
enc_states = self.encoder([enc_input for enc_input, dec_output in batch])
for enc_state, (enc_input, _dec_output) in zip(enc_states, batch):
example = unsup_enc_dec.Example(_dec_output["domain"])
with torch.no_grad():
seqs_of_one_example, _ = self.get_executable_seqs(
example, (enc_input, _dec_output)
)
seqs.append(seqs_of_one_example)
_loss = []
for seq in seqs_of_one_example:
dec_output = {"domain": _dec_output["domain"], "productions": seq}
ret_dict = self.decoder(dec_output, enc_state)
_loss.append(ret_dict["loss"])
losses.append(_loss)
return seqs, losses
def collect_update_losses(self, model, batch, seqs):
"""
Inefficient way of obtaining loss
"""
losses = []
for seqs_of_one_example, (enc_input, _dec_output) in zip(seqs, batch):
loss_l_of_one_example = []
for seq in seqs_of_one_example:
_loss = self.get_loss_of_single_example(
model, enc_input, _dec_output, seq
)
loss_l_of_one_example.append(_loss)
losses.append(loss_l_of_one_example)
return losses
@staticmethod
def get_loss_of_single_example(model, enc_input, _dec_output, seq):
dec_output = {"domain": _dec_output["domain"], "productions": seq}
loss_dict = model([[enc_input, dec_output]])
return loss_dict["loss"]