-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathconfig.py
59 lines (44 loc) · 1.46 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from __future__ import division
class Config():
def __init__(self):
self.root_path = "./"
# for data loader
self.data_set = "genia_sample"
self.batch_size = 64
self.if_shuffle = True
# override when loading data
self.voc_size = None
self.pos_size = None
self.label_size = None
self.actions = None
# embed size
self.token_embed = 100
self.action_embed = 20
self.entity_embed = self.action_embed
self.pos_embed = 20
self.input_dropout = 0.5
self.lstm_dropout = 0.5
# for lstm
self.if_treelstm = True
self.rnn_layers = 1
self.hidden_dim = 128
# reversed, for convenience of buffer
self.reversed = True
# for training
self.embed_path = self.root_path + "/data/word_vec_{0}_{1}.pkl".format(self.data_set, self.token_embed)
self.epoch = 500
self.if_gpu = False
self.opt = "Adam"
self.lr = 0.005 # [0.3, 0.00006]
self.l2 = 1e-4
self.check_every = 1
self.clip_norm = 3
# for early stop
self.lr_patience = 6
self.decay_patience = 3
self.pre_trained = True
self.data_path = self.root_path + "/data/{0}".format(self.data_set)
self.model_path = self.root_path + "/dumps/{0}_model.pt".format(self.data_set)
def __repr__(self):
return str(vars(self))
config = Config()