-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImdb.py
86 lines (59 loc) · 2.07 KB
/
Imdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 29 18:37:42 2019
@author: berk
"""
import numpy as np
def vectorize_sequences(sequences,dimension=10000):
results = np.zeros((len(sequences),dimension))
for i, sequence in enumerate(sequences):
results[i,sequence]= 1.
return results
#import dataset from keras
from keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
#prepare the data for the network
max([max(sequence) for sequence in train_data])
word_index= imdb.get_word_index()
reverse_word_index= dict([(value,key) for (key, value) in word_index.items()])
decoded_review= ''.join([reverse_word_index.get(i-3,"?")for i in train_data[0]])
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
y_train = np.asarray(train_labels).astype("float32")
y_test = np.asarray(test_labels).astype("float32")
#initial the network
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(16,activation="relu",input_shape=(10000,)))
#model.add(layers.Dense(16,activation="relu"))
#model.add(layers.Dense(16,activation="relu"))
model.add(layers.Dense(1,activation="sigmoid"))
model.compile(optimizer="rmsprop",
loss="binary_crossentropy",
metrics=["accuracy"])
#initial validation dataset
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
#train model
model.fit(partial_x_train,
partial_y_train,
epochs=3,
batch_size=512,
validation_data=(x_val,y_val))
#visualation of train process
import matplotlib.pyplot as plt
history_dict = model.history.history
loss_value = history_dict["loss"]
val_loss_values = history_dict["val_loss"]
epochs = range(1,len(loss_value)+1)
plt.plot(epochs,loss_value,"bo",label="Train loss")
plt.plot(epochs, val_loss_values,"b" , label="acc loss")
plt.title("Train and acc loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()