-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp.py
722 lines (629 loc) · 30 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
from flask import Flask, send_from_directory
from flask_cors import CORS, cross_origin
import json
import pandas as pd
import pickle
import datetime
from Business import Business
from AE_CF import AE_CF
import bz2file as bz2
from scipy.sparse import coo_matrix
import numpy as np
from collections import defaultdict
# print("pickle version"+pickle.format_version)
class Recommendations:
def __init__(self, business_df, reviews_df, state_name, shorten=False):
print(f"========Calculating For {state_name} State========")
self.business_df = business_df
self.reviews_df = reviews_df
self.ratings_mat = []
self.shorten = shorten if isinstance(shorten, bool) else False
self.user_num_to_user_hash_dict = dict()
self.user_hash_to_user_num_dict = dict()
self.business_num_to_business_hash_dict = dict()
self.business_hash_to_business_num_dict = dict()
self.business_recommendations = []
self.business_popularity = []
self.calculateRatingMatrix()
self.nonPersonalizedRecommendations()
def calculateRatingMatrix(self):
print("Calculating rating matrix...")
business_list = list(self.business_df['business_id'])
reviews_df_updated = self.reviews_df[self.reviews_df['business_id'].isin(
business_list)]
if (self.shorten):
print(f"Size Before Cutting Down: {reviews_df_updated.shape[0]}")
user_counts = reviews_df_updated.groupby(
'user_id').size().reset_index(name='count')
# Sort the user_counts dataframe in descending order by count and select the top 100 user_ids
top_users = user_counts.sort_values(by='count', ascending=False).head(100)[
'user_id'].tolist()
# Filter the original dataframe to keep only the records that belong to the top 100 user_ids
reviews_df_updated = reviews_df_updated[reviews_df_updated['user_id'].isin(
top_users)]
print(f"Size After Cutting Down: {reviews_df_updated.shape[0]}")
unique_business_id = reviews_df_updated['business_id'].unique()
unique_user_id = reviews_df_updated['user_id'].unique()
j = 0
for u in unique_user_id:
self.user_hash_to_user_num_dict[u] = j
self.user_num_to_user_hash_dict[j] = u
j += 1
j = 0
for i in unique_business_id:
self.business_hash_to_business_num_dict[i] = j
self.business_num_to_business_hash_dict[j] = i
j += 1
# Then, use the generated dictionaries to reindex UserID and MovieID in the data_df
user_list = reviews_df_updated['user_id'].values
movie_list = reviews_df_updated['business_id'].values
for j in range(len(reviews_df_updated)):
user_list[j] = self.user_hash_to_user_num_dict[user_list[j]]
movie_list[j] = self.business_hash_to_business_num_dict[movie_list[j]]
reviews_df_updated['user_id'] = user_list
reviews_df_updated['business_id'] = movie_list
num_user = len(reviews_df_updated['user_id'].unique())
num_movie = len(reviews_df_updated['business_id'].unique())
self.ratings_mat = coo_matrix((reviews_df_updated['stars'].values, (reviews_df_updated['user_id'].values,
reviews_df_updated['business_id'].values)), shape=(num_user, num_movie)).astype(float).toarray()
print(
f"Size of Ratings Matrix: {self.ratings_mat.shape[0]}, {self.ratings_mat.shape[1]}")
def nonPersonalizedRecommendations(self):
print("Calculating NPR...")
n = len(self.ratings_mat) # number of users
m = len(self.ratings_mat[0]) # number of movies
# Creating popularity array - size number of movies
self.business_popularity = np.zeros((m,))
# claculating the popularity of each movie by summing the values in each column
self.business_popularity = self.ratings_mat.sum(axis=0)
self.business_recommendations = np.zeros((n, 50), dtype=np.int32)
for u in range(self.ratings_mat.shape[0]):
business_unvisited = np.where(self.ratings_mat[u] == 0)[0]
unwatched_popularity = self.business_popularity[business_unvisited]
# Sort the unwatched movies according to popularity and fetch top 50 to recommend
self.business_recommendations[u] = business_unvisited[np.argsort(
unwatched_popularity)[::-1]][:50]
def getNPRForuUser(self, user_num):
print(f"Non personalized recommendations for User {user_num}:")
business_list = []
for i in range(12):
business_hash = self.getBusinessHashFromBusinessNum(
self.business_recommendations[0, i])
business = self.getBusinessInfo(business_hash)
business_list.append(business)
return business_list
def getUserHashFromUserNum(self, user_num):
return self.user_num_to_user_hash_dict[user_num]
def getUserNumFromUserHash(self, user_hash):
return self.user_hash_to_user_num_dict[user_hash]
def getBusinessHashFromBusinessNum(self, business_num):
return self.business_num_to_business_hash_dict[business_num]
def getBusinessNumFromBusinessHash(self, business_hash):
return self.business_hash_to_business_num_dict[business_hash]
def getBusinessInfo(self, business_hash):
bus_df = self.business_df[self.business_df['business_id']
== business_hash].iloc[0]
return Business(bus_df['name'], bus_df['address'], bus_df['city'], bus_df['state'], bus_df['postal_code'], bus_df['stars'])
app = Flask(__name__, static_folder='./build', static_url_path="")
CORS(app)
business_df = pd.DataFrame()
reviews_df = pd.DataFrame()
# create an empty dictionary to store the dataframes
hotel_state_df_map = {}
restaurent_state_df_map = {}
nightlife_state_df_map = {}
def loadCSV():
print("Loading CSV Files...")
print(datetime.datetime.now())
global reviews_df
reviews_df = pd.read_csv('yelp_academic_dataset_review.csv')
# user_df = pd.read_csv('yelp_academic_dataset_user.csv')
global business_df
business_df = pd.read_csv('yelp_academic_dataset_business.csv')
business_df = business_df.dropna(subset=['categories'])
print("Loading CSV Files Completed...")
print(datetime.datetime.now())
print("\n")
def getTopStates():
# Get Top Ten States
print("Generating Top 10 States Dataframes...")
unique_states = business_df['state'].unique()
state_map = dict()
for s in unique_states:
state_map[s] = business_df[business_df['state'] == s].shape[0]
# 'CA' 'MO' 'AZ' 'PA' 'TN' 'FL' 'IN' 'LA' 'AB' 'NV' 'ID' 'DE' 'IL' 'NJ' 'NC' 'CO' 'WA' 'HI' 'UT' 'TX' 'MT' 'MI' 'SD' 'XMS' 'MA' 'VI' 'VT'
top_states = [state[0] for state in sorted(sorted(state_map.items(
), key=lambda x: x[1], reverse=True), key=lambda x: x[1], reverse=True)[:10]]
print(top_states)
# Creating mask for Hotels & Travel
hotel_mask = business_df['categories'].str.contains('Hotels & Travel')
hotel_df = business_df[hotel_mask]
# Creating mask for Restaurents
restaurent_mask = business_df['categories'].str.contains('Restaurants')
restaurent_df = business_df[restaurent_mask]
# Creating mask for Nightlife
nightlife_mask = business_df['categories'].str.contains('Nightlife')
nightlife_df = business_df[nightlife_mask]
global hotel_state_df_map
global restaurent_state_df_map
global nightlife_state_df_map
for state in top_states:
df_name = f'business_df_{state}'
hotel_state_df = hotel_df[hotel_df['state'] == state]
restaurent_state_df = restaurent_df[restaurent_df['state'] == state]
nightlife_state_df = nightlife_df[nightlife_df['state'] == state]
exec(f"{df_name} = hotel_state_df")
# add the dataframe to the dictionary with the state abbreviation as the key
hotel_state_df_map[state] = hotel_state_df
exec(f"{df_name} = restaurent_state_df")
# add the dataframe to the dictionary with the state abbreviation as the key
restaurent_state_df_map[state] = restaurent_state_df
exec(f"{df_name} = nightlife_state_df")
# add the dataframe to the dictionary with the state abbreviation as the key
nightlife_state_df_map[state] = nightlife_state_df
def compressed_pickle(title, data):
with bz2.BZ2File(title + ".pbz2", "w") as f:
pickle.dump(data, f)
def decompress_pickle(file):
data = bz2.BZ2File(file, "rb")
# recommendations = Recommendations([],[],'LA')
data = pickle.load(data)
return data
# loadCSV()
# getTopStates()
hotel_state_rec_map = {}
restaurent_state_rec_map = {}
nightlife_state_rec_map = {}
hotel_mf_map = {}
restaurent_mf_map = {}
nightlife_mf_map = {}
hotel_aecf_map = {}
restaurent_aecf_map = {}
nightlife_aecf_map = {}
# Write APIs here
@app.route('/profile')
@cross_origin()
def my_profile():
response_body = {
"name": "Nagato",
"about": "Hello! I'm a full stack developer that loves python and javascript"
}
return response_body
@app.route('/')
@cross_origin()
def serve():
return send_from_directory(app.static_folder, 'index.html')
@app.route('/<string:rec_type>/<string:state_name>/<int:user_id>/getAll')
@cross_origin()
def getAll(rec_type, state_name, user_id):
global hotel_state_rec_map
global restaurent_state_rec_map
global nightlife_state_rec_map
global hotel_mf_map
global restaurent_mf_map
global nightlife_mf_map
global hotel_aecf_map
global restaurent_aecf_map
global nightlife_aecf_map
if rec_type == "hotel":
mf_recommendations = hotel_mf_map[state_name]
aecf_recommendations = hotel_aecf_map[state_name]
recommendations_class = hotel_state_rec_map[state_name]
elif rec_type == "restaurent":
mf_recommendations = restaurent_mf_map[state_name]
aecf_recommendations = restaurent_aecf_map[state_name]
recommendations_class = restaurent_state_rec_map[state_name]
elif rec_type == "nightlife":
mf_recommendations = nightlife_mf_map[state_name]
aecf_recommendations = nightlife_aecf_map[state_name]
recommendations_class = nightlife_state_rec_map[state_name]
npr_list = recommendations_class.getNPRForuUser(user_id)
mf_ids = mf_recommendations[user_id][:12]
mf_list = []
for i in range(12):
business_hash = recommendations_class.getBusinessHashFromBusinessNum(
mf_ids[i])
business = recommendations_class.getBusinessInfo(business_hash)
mf_list.append(business)
aecf_ids = aecf_recommendations.get_user_recommendation(user_id)
aecf_list = []
for i in range(12):
business_hash = recommendations_class.getBusinessHashFromBusinessNum(
aecf_ids[i])
business = recommendations_class.getBusinessInfo(business_hash)
aecf_list.append(business)
# print(npr_list)
# print(aecf_list)
# print(mf_list)
return json.dumps({
'npr': [{'name': business.name, 'address': business.address, 'city': business.city, 'state': business.state, 'postal_code': business.postal_code, 'stars': business.stars} for business in npr_list],
'mf': [{'name': business.name, 'address': business.address, 'city': business.city, 'state': business.state, 'postal_code': business.postal_code, 'stars': business.stars} for business in mf_list],
'aecf': [{'name': business.name, 'address': business.address, 'city': business.city, 'state': business.state, 'postal_code': business.postal_code, 'stars': business.stars} for business in aecf_list]
})
@app.route('/<int:user_id>/getNPR2')
@cross_origin()
def getNPR2Recommendation(user_id):
global hotel_state_rec_map
global restaurent_state_rec_map
global nightlife_state_rec_map
business_list = hotel_state_rec_map['LA'].getNPRForuUser(user_id)
return json.dumps(
[{'name': business.name, 'address': business.address, 'city': business.city, 'state': business.state, 'postal_code': business.postal_code, 'stars': business.stars} for business in business_list])
@app.route('/<string:rec_type>/<string:state_name>/<int:user_id>/getNPR')
@cross_origin()
def getNPRRecommendation(rec_type, state_name, user_id):
global hotel_state_rec_map
global restaurent_state_rec_map
global nightlife_state_rec_map
if rec_type == "hotel":
recommendations_class = hotel_state_rec_map[state_name]
elif rec_type == "restaurent":
recommendations_class = restaurent_state_rec_map[state_name]
elif rec_type == "nightlife":
recommendations_class = nightlife_state_rec_map[state_name]
business_list = recommendations_class.getNPRForuUser(user_id)
return json.dumps(
[{'name': business.name, 'address': business.address, 'city': business.city, 'state': business.state, 'postal_code': business.postal_code, 'stars': business.stars} for business in business_list])
@app.route('/<string:rec_type>/<string:state_name>/<int:user_id>/getMF')
@cross_origin()
def getMFRecommendation(rec_type, state_name, user_id):
global hotel_mf_map
global restaurent_mf_map
global nightlife_mf_map
global hotel_state_rec_map
global restaurent_state_rec_map
global nightlife_state_rec_map
if rec_type == "hotel":
mf_recommendations = hotel_mf_map[state_name]
recommendations_class = hotel_state_rec_map[state_name]
elif rec_type == "restaurent":
mf_recommendations = restaurent_mf_map[state_name]
recommendations_class = restaurent_state_rec_map[state_name]
elif rec_type == "nightlife":
mf_recommendations = nightlife_mf_map[state_name]
recommendations_class = nightlife_state_rec_map[state_name]
business_ids = mf_recommendations[user_id][:12]
business_list = []
for i in range(12):
business_hash = recommendations_class.getBusinessHashFromBusinessNum(
business_ids[i])
business = recommendations_class.getBusinessInfo(business_hash)
business_list.append(business)
return json.dumps(
[{'name': business.name, 'address': business.address, 'city': business.city, 'state': business.state, 'postal_code': business.postal_code, 'stars': business.stars} for business in business_list])
@app.route('/<string:rec_type>/<string:state_name>/<int:user_id>/getAECF')
@cross_origin()
def getAECFRecommendation(rec_type, state_name, user_id):
global hotel_aecf_map
global restaurent_aecf_map
global nightlife_aecf_map
global hotel_state_rec_map
global restaurent_state_rec_map
global nightlife_state_rec_map
if rec_type == "hotel":
aecf_recommendations = hotel_aecf_map[state_name]
recommendations_class = hotel_state_rec_map[state_name]
elif rec_type == "restaurent":
aecf_recommendations = restaurent_aecf_map[state_name]
recommendations_class = restaurent_state_rec_map[state_name]
elif rec_type == "nightlife":
aecf_recommendations = nightlife_aecf_map[state_name]
recommendations_class = nightlife_state_rec_map[state_name]
business_ids = aecf_recommendations.get_user_recommendation(user_id)
# print(business_ids)
business_list = []
for i in range(12):
business_hash = recommendations_class.getBusinessHashFromBusinessNum(
business_ids[i])
business = recommendations_class.getBusinessInfo(business_hash)
business_list.append(business)
return json.dumps(
[{'name': business.name, 'address': business.address, 'city': business.city, 'state': business.state, 'postal_code': business.postal_code, 'stars': business.stars} for business in business_list])
if __name__ == '__main__':
print("Loading Hotel Data Files...")
print(datetime.datetime.now())
PA_Hotel_Recommendation = decompress_pickle(
"data/hotel/PA_Hotel_Recommendation.pbz2")
hotel_state_rec_map['PA'] = PA_Hotel_Recommendation
FL_Hotel_Recommendation = decompress_pickle(
"data/hotel/FL_Hotel_Recommendation.pbz2")
hotel_state_rec_map['FL'] = FL_Hotel_Recommendation
TN_Hotel_Recommendation = decompress_pickle(
"data/hotel/TN_Hotel_Recommendation.pbz2")
hotel_state_rec_map['TN'] = TN_Hotel_Recommendation
IN_Hotel_Recommendation = decompress_pickle(
"data/hotel/IN_Hotel_Recommendation.pbz2")
hotel_state_rec_map['IN'] = IN_Hotel_Recommendation
MO_Hotel_Recommendation = decompress_pickle(
"data/hotel/MO_Hotel_Recommendation.pbz2")
hotel_state_rec_map['MO'] = MO_Hotel_Recommendation
LA_Hotel_Recommendation = decompress_pickle(
"data/hotel/LA_Hotel_Recommendation.pbz2")
hotel_state_rec_map['LA'] = LA_Hotel_Recommendation
AZ_Hotel_Recommendation = decompress_pickle(
"data/hotel/AZ_Hotel_Recommendation.pbz2")
hotel_state_rec_map['AZ'] = AZ_Hotel_Recommendation
NJ_Hotel_Recommendation = decompress_pickle(
"data/hotel/NJ_Hotel_Recommendation.pbz2")
hotel_state_rec_map['NJ'] = NJ_Hotel_Recommendation
NV_Hotel_Recommendation = decompress_pickle(
"data/hotel/NV_Hotel_Recommendation.pbz2")
hotel_state_rec_map['NV'] = NV_Hotel_Recommendation
AB_Hotel_Recommendation = decompress_pickle(
"data/hotel/AB_Hotel_Recommendation.pbz2")
hotel_state_rec_map['AB'] = AB_Hotel_Recommendation
print("Loading Hotel Data Files Completed...")
print(datetime.datetime.now())
print("\n")
print("Loading Restaurent Data Files...")
print(datetime.datetime.now())
PA_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/PA_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['PA'] = PA_Restaurent_Recommendation
FL_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/FL_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['FL'] = FL_Restaurent_Recommendation
TN_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/TN_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['TN'] = TN_Restaurent_Recommendation
IN_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/IN_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['IN'] = IN_Restaurent_Recommendation
MO_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/MO_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['MO'] = MO_Restaurent_Recommendation
LA_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/LA_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['LA'] = LA_Restaurent_Recommendation
AZ_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/AZ_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['AZ'] = AZ_Restaurent_Recommendation
NJ_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/NJ_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['NJ'] = NJ_Restaurent_Recommendation
NV_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/NV_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['NV'] = NV_Restaurent_Recommendation
AB_Restaurent_Recommendation = decompress_pickle(
"data/restaurent/AB_Restaurent_Recommendation.pbz2")
restaurent_state_rec_map['AB'] = AB_Restaurent_Recommendation
print("Loading Restaurent Data Files Completed...")
print(datetime.datetime.now())
print("\n")
print("Loading Nightlife Data Files...")
print(datetime.datetime.now())
PA_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/PA_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['PA'] = PA_Nightlife_Recommendation
FL_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/FL_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['FL'] = FL_Nightlife_Recommendation
TN_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/TN_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['TN'] = TN_Nightlife_Recommendation
IN_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/IN_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['IN'] = IN_Nightlife_Recommendation
MO_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/MO_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['MO'] = MO_Nightlife_Recommendation
LA_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/LA_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['LA'] = LA_Nightlife_Recommendation
AZ_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/AZ_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['AZ'] = AZ_Nightlife_Recommendation
NJ_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/NJ_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['NJ'] = NJ_Nightlife_Recommendation
NV_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/NV_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['NV'] = NV_Nightlife_Recommendation
AB_Nightlife_Recommendation = decompress_pickle(
"data/nightlife/AB_Nightlife_Recommendation.pbz2")
nightlife_state_rec_map['AB'] = AB_Nightlife_Recommendation
print("Loading Nightlife Data Files Completed...")
print(datetime.datetime.now())
print("\n")
print("Loading Hotel MF Files...")
print(datetime.datetime.now())
PA_Hotel_MF = decompress_pickle("data/hotel/PA_Hotel_MF.pbz2")
hotel_mf_map['PA'] = PA_Hotel_MF
FL_Hotel_MF = decompress_pickle("data/hotel/FL_Hotel_MF.pbz2")
hotel_mf_map['FL'] = FL_Hotel_MF
TN_Hotel_MF = decompress_pickle("data/hotel/TN_Hotel_MF.pbz2")
hotel_mf_map['TN'] = TN_Hotel_MF
IN_Hotel_MF = decompress_pickle("data/hotel/IN_Hotel_MF.pbz2")
hotel_mf_map['IN'] = IN_Hotel_MF
MO_Hotel_MF = decompress_pickle("data/hotel/MO_Hotel_MF.pbz2")
hotel_mf_map['MO'] = MO_Hotel_MF
LA_Hotel_MF = decompress_pickle("data/hotel/LA_Hotel_MF.pbz2")
hotel_mf_map['LA'] = LA_Hotel_MF
AZ_Hotel_MF = decompress_pickle("data/hotel/AZ_Hotel_MF.pbz2")
hotel_mf_map['AZ'] = AZ_Hotel_MF
NJ_Hotel_MF = decompress_pickle("data/hotel/NJ_Hotel_MF.pbz2")
hotel_mf_map['NJ'] = NJ_Hotel_MF
NV_Hotel_MF = decompress_pickle("data/hotel/NV_Hotel_MF.pbz2")
hotel_mf_map['NV'] = NV_Hotel_MF
AB_Hotel_MF = decompress_pickle("data/hotel/AB_Hotel_MF.pbz2")
hotel_mf_map['AB'] = AB_Hotel_MF
print("Loading Hotel MF Files Completed...")
print(datetime.datetime.now())
print("\n")
print("Loading Restaurent MF Files...")
print(datetime.datetime.now())
PA_Restaurent_MF = decompress_pickle(
"data/restaurent/PA_Restaurent_MF.pbz2")
restaurent_mf_map['PA'] = PA_Restaurent_MF
FL_Restaurent_MF = decompress_pickle(
"data/restaurent/FL_Restaurent_MF.pbz2")
restaurent_mf_map['FL'] = FL_Restaurent_MF
TN_Restaurent_MF = decompress_pickle(
"data/restaurent/TN_Restaurent_MF.pbz2")
restaurent_mf_map['TN'] = TN_Restaurent_MF
IN_Restaurent_MF = decompress_pickle(
"data/restaurent/IN_Restaurent_MF.pbz2")
restaurent_mf_map['IN'] = IN_Restaurent_MF
MO_Restaurent_MF = decompress_pickle(
"data/restaurent/MO_Restaurent_MF.pbz2")
restaurent_mf_map['MO'] = MO_Restaurent_MF
LA_Restaurent_MF = decompress_pickle(
"data/restaurent/LA_Restaurent_MF.pbz2")
restaurent_mf_map['LA'] = LA_Restaurent_MF
AZ_Restaurent_MF = decompress_pickle(
"data/restaurent/AZ_Restaurent_MF.pbz2")
restaurent_mf_map['AZ'] = AZ_Restaurent_MF
NJ_Restaurent_MF = decompress_pickle(
"data/restaurent/NJ_Restaurent_MF.pbz2")
restaurent_mf_map['NJ'] = NJ_Restaurent_MF
NV_Restaurent_MF = decompress_pickle(
"data/restaurent/NV_Restaurent_MF.pbz2")
restaurent_mf_map['NV'] = NV_Restaurent_MF
AB_Restaurent_MF = decompress_pickle(
"data/restaurent/AB_Restaurent_MF.pbz2")
restaurent_mf_map['AB'] = AB_Restaurent_MF
print("Loading Restaurent MF Files Completed...")
print(datetime.datetime.now())
print("\n")
print("Loading Nightlife MF Files...")
print(datetime.datetime.now())
PA_Nightlife_MF = decompress_pickle(
"data/nightlife/PA_Nightlife_MF.pbz2")
nightlife_mf_map['PA'] = PA_Nightlife_MF
FL_Nightlife_MF = decompress_pickle(
"data/nightlife/FL_Nightlife_MF.pbz2")
nightlife_mf_map['FL'] = FL_Nightlife_MF
TN_Nightlife_MF = decompress_pickle(
"data/nightlife/TN_Nightlife_MF.pbz2")
nightlife_mf_map['TN'] = TN_Nightlife_MF
IN_Nightlife_MF = decompress_pickle(
"data/nightlife/IN_Nightlife_MF.pbz2")
nightlife_mf_map['IN'] = IN_Nightlife_MF
MO_Nightlife_MF = decompress_pickle(
"data/nightlife/MO_Nightlife_MF.pbz2")
nightlife_mf_map['MO'] = MO_Nightlife_MF
LA_Nightlife_MF = decompress_pickle(
"data/nightlife/LA_Nightlife_MF.pbz2")
nightlife_mf_map['LA'] = LA_Nightlife_MF
AZ_Nightlife_MF = decompress_pickle(
"data/nightlife/AZ_Nightlife_MF.pbz2")
nightlife_mf_map['AZ'] = AZ_Nightlife_MF
NJ_Nightlife_MF = decompress_pickle(
"data/nightlife/NJ_Nightlife_MF.pbz2")
nightlife_mf_map['NJ'] = NJ_Nightlife_MF
NV_Nightlife_MF = decompress_pickle(
"data/nightlife/NV_Nightlife_MF.pbz2")
nightlife_mf_map['NV'] = NV_Nightlife_MF
AB_Nightlife_MF = decompress_pickle(
"data/nightlife/AB_Nightlife_MF.pbz2")
nightlife_mf_map['AB'] = AB_Nightlife_MF
print("Loading Nightlife MF Files Completed...")
print(datetime.datetime.now())
print("\n")
print("Loading Hotel AECF Files...")
print(datetime.datetime.now())
PA_Hotel_AECF = decompress_pickle(
"data/hotel/PA_Hotel_AECF.pbz2")
hotel_aecf_map['PA'] = PA_Hotel_AECF
FL_Hotel_AECF = decompress_pickle(
"data/hotel/FL_Hotel_AECF.pbz2")
hotel_aecf_map['FL'] = FL_Hotel_AECF
TN_Hotel_AECF = decompress_pickle(
"data/hotel/TN_Hotel_AECF.pbz2")
hotel_aecf_map['TN'] = TN_Hotel_AECF
IN_Hotel_AECF = decompress_pickle(
"data/hotel/IN_Hotel_AECF.pbz2")
hotel_aecf_map['IN'] = IN_Hotel_AECF
MO_Hotel_AECF = decompress_pickle(
"data/hotel/MO_Hotel_AECF.pbz2")
hotel_aecf_map['MO'] = MO_Hotel_AECF
LA_Hotel_AECF = decompress_pickle(
"data/hotel/LA_Hotel_AECF.pbz2")
hotel_aecf_map['LA'] = LA_Hotel_AECF
AZ_Hotel_AECF = decompress_pickle(
"data/hotel/AZ_Hotel_AECF.pbz2")
hotel_aecf_map['AZ'] = AZ_Hotel_AECF
NJ_Hotel_AECF = decompress_pickle(
"data/hotel/NJ_Hotel_AECF.pbz2")
hotel_aecf_map['NJ'] = NJ_Hotel_AECF
NV_Hotel_AECF = decompress_pickle(
"data/hotel/NV_Hotel_AECF.pbz2")
hotel_aecf_map['NV'] = NV_Hotel_AECF
AB_Hotel_AECF = decompress_pickle(
"data/hotel/AB_Hotel_AECF.pbz2")
hotel_aecf_map['AB'] = AB_Hotel_AECF
print("Loading Hotel AECF Files Completed...")
print(datetime.datetime.now())
print("\n")
print("Loading Restaurent AECF Files...")
print(datetime.datetime.now())
PA_Restaurent_AECF = decompress_pickle(
"data/restaurent/PA_Restaurent_AECF.pbz2")
restaurent_aecf_map['PA'] = PA_Restaurent_AECF
FL_Restaurent_AECF = decompress_pickle(
"data/restaurent/FL_Restaurent_AECF.pbz2")
restaurent_aecf_map['FL'] = FL_Restaurent_AECF
TN_Restaurent_AECF = decompress_pickle(
"data/restaurent/TN_Restaurent_AECF.pbz2")
restaurent_aecf_map['TN'] = TN_Restaurent_AECF
IN_Restaurent_AECF = decompress_pickle(
"data/restaurent/IN_Restaurent_AECF.pbz2")
restaurent_aecf_map['IN'] = IN_Restaurent_AECF
MO_Restaurent_AECF = decompress_pickle(
"data/restaurent/MO_Restaurent_AECF.pbz2")
restaurent_aecf_map['MO'] = MO_Restaurent_AECF
LA_Restaurent_AECF = decompress_pickle(
"data/restaurent/LA_Restaurent_AECF.pbz2")
restaurent_aecf_map['LA'] = LA_Restaurent_AECF
AZ_Restaurent_AECF = decompress_pickle(
"data/restaurent/AZ_Restaurent_AECF.pbz2")
restaurent_aecf_map['AZ'] = AZ_Restaurent_AECF
NJ_Restaurent_AECF = decompress_pickle(
"data/restaurent/NJ_Restaurent_AECF.pbz2")
restaurent_aecf_map['NJ'] = NJ_Restaurent_AECF
NV_Restaurent_AECF = decompress_pickle(
"data/restaurent/NV_Restaurent_AECF.pbz2")
restaurent_aecf_map['NV'] = NV_Restaurent_AECF
AB_Restaurent_AECF = decompress_pickle(
"data/restaurent/AB_Restaurent_AECF.pbz2")
restaurent_aecf_map['AB'] = AB_Restaurent_AECF
print("Loading Restaurent AECF Files Completed...")
print(datetime.datetime.now())
print("\n")
print("Loading Nightlife AECF Files...")
print(datetime.datetime.now())
PA_Nightlife_AECF = decompress_pickle(
"data/nightlife/PA_Nightlife_AECF.pbz2")
nightlife_aecf_map['PA'] = PA_Nightlife_AECF
FL_Nightlife_AECF = decompress_pickle(
"data/nightlife/FL_Nightlife_AECF.pbz2")
nightlife_aecf_map['FL'] = FL_Nightlife_AECF
TN_Nightlife_AECF = decompress_pickle(
"data/nightlife/TN_Nightlife_AECF.pbz2")
nightlife_aecf_map['TN'] = TN_Nightlife_AECF
IN_Nightlife_AECF = decompress_pickle(
"data/nightlife/IN_Nightlife_AECF.pbz2")
nightlife_aecf_map['IN'] = IN_Nightlife_AECF
MO_Nightlife_AECF = decompress_pickle(
"data/nightlife/MO_Nightlife_AECF.pbz2")
nightlife_aecf_map['MO'] = MO_Nightlife_AECF
LA_Nightlife_AECF = decompress_pickle(
"data/nightlife/LA_Nightlife_AECF.pbz2")
nightlife_aecf_map['LA'] = LA_Nightlife_AECF
AZ_Nightlife_AECF = decompress_pickle(
"data/nightlife/AZ_Nightlife_AECF.pbz2")
nightlife_aecf_map['AZ'] = AZ_Nightlife_AECF
NJ_Nightlife_AECF = decompress_pickle(
"data/nightlife/NJ_Nightlife_AECF.pbz2")
nightlife_aecf_map['NJ'] = NJ_Nightlife_AECF
NV_Nightlife_AECF = decompress_pickle(
"data/nightlife/NV_Nightlife_AECF.pbz2")
nightlife_aecf_map['NV'] = NV_Nightlife_AECF
AB_Nightlife_AECF = decompress_pickle(
"data/nightlife/AB_Nightlife_AECF.pbz2")
nightlife_aecf_map['AB'] = AB_Nightlife_AECF
print("Loading Nightlife AECF Files Completed...")
print(datetime.datetime.now())
print("\n")
app.run(debug=False)
# app.run(port = 8080, host = '0.0.0.0', debug=False)