-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmnist75.py
392 lines (300 loc) · 12.8 KB
/
mnist75.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from torch_geometric.data import DataLoader
import torch
import scipy.io as sio
from torch_geometric.data.data import Data
import numpy as np
import os.path as osp
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Sequential, Linear, ReLU
from torch_geometric.nn import (NNConv, graclus, max_pool, max_pool_x,GINConv,global_add_pool,
global_mean_pool,GATConv,ChebConv,GCNConv)
from torch_geometric.datasets import MNISTSuperpixels
from libs.spect_conv import SpectConv,EdgeEncoder,SpectConCatConv
from libs.utils import PPGNAddDegree,get_n_params
transform = PPGNAddDegree(nmax=75,adddegree=True)
train_dataset = MNISTSuperpixels('dataset/MNIST/', True, pre_transform=transform)
test_dataset = MNISTSuperpixels('dataset/MNIST/', False, pre_transform=transform)
train_loader = DataLoader(train_dataset[0:55000], batch_size=64, shuffle=True)
val_loader = DataLoader(train_dataset[55000:60000], batch_size=64, shuffle=False)
test_loader = DataLoader(test_dataset[0:10000], batch_size=64, shuffle=False)
# normalize feature
mx=train_dataset.data.x.max(0)
train_dataset.data.x=train_dataset.data.x/mx.values
test_dataset.data.x=test_dataset.data.x/mx.values
trsize=55000
tsize=10000
vsize=5000
class PPGN(nn.Module):
def __init__(self,nmax=75,nneuron=64):
super(PPGN, self).__init__()
self.nmax=nmax
self.nneuron=nneuron
ninp=train_dataset.data.X2.shape[1]
bias=False
self.mlp1_1 = torch.nn.Conv2d(ninp,nneuron,1,bias=bias)
self.mlp1_2 = torch.nn.Conv2d(ninp,nneuron,1,bias=bias)
self.mlp1_3 = torch.nn.Conv2d(nneuron+ninp, nneuron,1,bias=bias)
self.mlp2_1 = torch.nn.Conv2d(nneuron,nneuron,1,bias=bias)
self.mlp2_2 = torch.nn.Conv2d(nneuron,nneuron,1,bias=bias)
self.mlp2_3 = torch.nn.Conv2d(2*nneuron,nneuron,1,bias=bias)
self.mlp3_1 = torch.nn.Conv2d(nneuron,nneuron,1,bias=bias)
self.mlp3_2 = torch.nn.Conv2d(nneuron,nneuron,1,bias=bias)
self.mlp3_3 = torch.nn.Conv2d(2*nneuron,nneuron,1,bias=bias)
self.h1 = torch.nn.Linear(3*nneuron, 64)
self.h2 = torch.nn.Linear(64, 10)
def forward(self,data):
x=data.X2
x1=F.relu(self.mlp1_1(x))
x2=F.relu(self.mlp1_2(x))
x1x2 = torch.matmul(x1, x2)
x=F.relu(self.mlp1_3(torch.cat([x1x2,x],1)))
# sum layer readout
xo1=torch.sum(x*data.M[:,0:1,:,:],(2,3))
x1=F.relu(self.mlp2_1(x))
x2=F.relu(self.mlp2_2(x))
x1x2 = torch.matmul(x1, x2)
x=F.relu(self.mlp2_3(torch.cat([x1x2,x],1)))
# sum layer readout
xo2=torch.sum(x*data.M[:,0:1,:,:],(2,3))
x1=F.relu(self.mlp3_1(x))
x2=F.relu(self.mlp3_2(x))
x1x2 = torch.matmul(x1, x2)
x=F.relu(self.mlp3_3(torch.cat([x1x2,x],1)))
# sum layer readout
xo3=torch.sum(x*data.M[:,0:1,:,:],(2,3))
x=torch.cat([xo1,xo2,xo3],1)
x=F.relu(self.h1(x))
x=self.h2(x)
return F.log_softmax(x, dim=1)
class GcnNet(nn.Module):
def __init__(self):
super(GcnNet, self).__init__()
ninp=train_dataset.num_features
nout=train_dataset.num_classes
nn=64
self.conv1 = GCNConv(ninp, nn, cached=False)
self.conv2 = GCNConv(nn, nn, cached=False)
self.conv3 = GCNConv(nn, nn, cached=False)
self.bn1 = torch.nn.BatchNorm1d(nn)
self.fc1 = torch.nn.Linear(nn, 32)
self.fc2 = torch.nn.Linear(32, nout)
def forward(self, data):
x=data.x
edge_index=data.edge_index
x = F.relu(self.conv1(x, edge_index))
x = F.relu(self.conv2(x, edge_index))
x = F.relu(self.conv3(x, edge_index))
x = global_mean_pool(x, data.batch)
x=self.bn1(x)
x = F.relu(self.fc1(x))
return F.log_softmax(self.fc2(x), dim=1)
class GatNet(nn.Module):
def __init__(self):
super(GatNet, self).__init__()
ninp=train_dataset.num_features
nout=train_dataset.num_classes
self.conv1 = GATConv(ninp, 8, heads=8, dropout=0.0)
self.conv2 = GATConv(8 * 8, 16, heads=8, concat=True, dropout=0.0)
self.conv3 = GATConv(8 * 16, 16, heads=8, concat=True, dropout=0.0)
self.bn1 = torch.nn.BatchNorm1d(128)
self.fc1 = torch.nn.Linear(128, 32)
self.fc2 = torch.nn.Linear(32, nout)
def forward(self, data):
x=data.x
x = F.dropout(x, p=0.1, training=self.training)
x = F.elu(self.conv1(x, data.edge_index))
x = F.dropout(x, p=0.1, training=self.training)
x = F.elu(self.conv2(x, data.edge_index))
x = F.dropout(x, p=0.1, training=self.training)
x = F.elu(self.conv3(x, data.edge_index))
x = global_mean_pool(x, data.batch)
x=self.bn1(x)
x = F.relu(self.fc1(x))
#x = F.dropout(x, training=self.training)
return F.log_softmax(self.fc2(x), dim=1)
class ChebNet(nn.Module):
def __init__(self):
super(ChebNet, self).__init__()
S=5
ninp=train_dataset.num_features
nout=train_dataset.num_classes
self.conv1 = ChebConv(ninp, 64,S)
self.conv2 = ChebConv(64, 64, S)
self.conv3 = ChebConv(64, 64, S)
self.bn1 = torch.nn.BatchNorm1d(64)
self.fc1 = torch.nn.Linear(64, 32)
self.fc2 = torch.nn.Linear(32, nout) #int(d.num_classes))
def forward(self, data):
x=data.x
edge_index=data.edge_index
x = F.dropout(x, p=0.1, training=self.training)
#x = F.relu(self.conv1(x, edge_index))
x = F.relu(self.conv1(x, edge_index,lambda_max=data.lmax,batch=data.batch))
x = F.dropout(x, p=0.1, training=self.training)
#x = F.relu(self.conv2(x, edge_index))
x = F.relu(self.conv2(x, edge_index,lambda_max=data.lmax,batch=data.batch))
x = F.dropout(x, p=0.1, training=self.training)
#x = F.relu(self.conv3(x, edge_index))
x = F.relu(self.conv3(x, edge_index,lambda_max=data.lmax,batch=data.batch))
x = global_mean_pool(x, data.batch)
x=self.bn1(x)
x = F.relu(self.fc1(x))
return F.log_softmax(self.fc2(x), dim=1)
class GinNet(nn.Module):
def __init__(self):
super(GinNet, self).__init__()
ninp=train_dataset.num_features
nout=train_dataset.num_classes
nn1 = Sequential(Linear(ninp, 64), ReLU(), Linear(64, 64))
self.conv1 = GINConv(nn1,train_eps=True)
self.bn1 = torch.nn.BatchNorm1d(64)
nn2 = Sequential(Linear(64, 64), ReLU(), Linear(64, 64))
self.conv2 = GINConv(nn2,train_eps=True)
self.bn2 = torch.nn.BatchNorm1d(64)
nn3 = Sequential(Linear(64, 64), ReLU(), Linear(64, 64))
self.conv3 = GINConv(nn3,train_eps=True)
self.bn3 = torch.nn.BatchNorm1d(64)
self.fc1 = torch.nn.Linear(64, 32)
self.fc2 = torch.nn.Linear(32, nout)
def forward(self, data):
x=data.x
edge_index=data.edge_index
x = F.relu(self.conv1(x, edge_index))
x = self.bn1(x)
x = F.relu(self.conv2(x, edge_index))
x = self.bn2(x)
x = F.relu(self.conv3(x, edge_index))
x = global_mean_pool(x, data.batch)
x = self.bn3(x)
x = F.elu(self.fc1(x))
#x = F.dropout(x, training=self.training)
return F.log_softmax(self.fc2(x), dim=1)
class MlpNet(nn.Module):
def __init__(self):
super(MlpNet, self).__init__()
ninp=train_dataset.num_features
nout=train_dataset.num_classes
self.conv1 = torch.nn.Linear(ninp, 64)
self.conv2 = torch.nn.Linear(64, 64)
self.conv3 = torch.nn.Linear(64, 64)
self.bn1 = torch.nn.BatchNorm1d(64)
self.fc1 = torch.nn.Linear(64, 32)
self.fc2 = torch.nn.Linear(32, nout)
def forward(self, data):
x=data.x
edge_index=data.edge_index
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = global_mean_pool(x, data.batch)
x=self.bn1(x)
x = F.relu(self.fc1(x))
return F.log_softmax(self.fc2(x), dim=1)
class GNNML1(nn.Module):
def __init__(self):
super(GNNML1, self).__init__()
# number of neuron
nout=64
# three part concatenate or sum?
self.concat=False
if self.concat:
nin=3*nout
else:
nin=nout
ninp=train_dataset.num_features
self.conv11 = SpectConv(ninp,nout,selfconn=False)
self.conv21 = SpectConv(nin, nout, selfconn=False)
self.conv31 = SpectConv(nin, nout, selfconn=False)
self.bn1 = torch.nn.BatchNorm1d(nin)
#self.bn2 = torch.nn.BatchNorm1d(nin)
#self.bn3 = torch.nn.BatchNorm1d(nin)
self.fc11 = torch.nn.Linear(ninp,nout)
self.fc21 = torch.nn.Linear(nin, nout)
self.fc31 = torch.nn.Linear(nin, nout)
self.fc12 = torch.nn.Linear(ninp,nout)
self.fc22 = torch.nn.Linear(nin, nout)
self.fc32 = torch.nn.Linear(nin, nout)
self.fc13 = torch.nn.Linear(ninp,nout)
self.fc23 = torch.nn.Linear(nin, nout)
self.fc33 = torch.nn.Linear(nin, nout)
self.fc1 = torch.nn.Linear(nin, 32)
self.fc2 = torch.nn.Linear(32, 10)
def forward(self, data):
x=data.x
edge_index=data.edge_index
edge_attr=torch.ones(edge_index.shape[1],1).to('cuda')
if self.concat:
x = F.dropout(x, p=0.1, training=self.training)
x = torch.cat([F.relu(self.fc11(x)), F.relu(self.conv11(x, edge_index,edge_attr)),F.relu(self.fc12(x)*self.fc13(x))],1)
x = F.dropout(x, p=0.1, training=self.training)
x = torch.cat([F.relu(self.fc21(x)), F.relu(self.conv21(x, edge_index,edge_attr)),F.relu(self.fc22(x)*self.fc23(x))],1)
x = F.dropout(x, p=0.1, training=self.training)
x = torch.cat([F.relu(self.fc31(x)), F.relu(self.conv31(x, edge_index,edge_attr)),F.relu(self.fc32(x)*self.fc33(x))],1)
else:
x = F.dropout(x, p=0.1, training=self.training)
x = F.relu(self.fc11(x)+self.conv11(x, edge_index,edge_attr)+self.fc12(x)*self.fc13(x)) # )+ torch.tanh(
x = F.dropout(x, p=0.1, training=self.training)
x = F.relu(self.fc21(x)+self.conv21(x, edge_index,edge_attr)+self.fc22(x)*self.fc23(x))
#x=self.bn2(x)
x = F.dropout(x, p=0.1, training=self.training)
x = F.relu(self.fc31(x)+self.conv31(x, edge_index,edge_attr)+self.fc32(x)*self.fc33(x))
#x=self.bn3(x)
x = global_mean_pool(x, data.batch)
x=self.bn1(x)
x = F.relu(self.fc1(x))
return F.log_softmax(self.fc2(x), dim=1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GNNML1().to(device) # GcnNet GatNet ChebNet GinNet MlpNet PPGN GNNML1
print(get_n_params(model))
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train(epoch):
model.train()
L=0
correct = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
pred = model(data)
lss=F.nll_loss(pred, data.y,reduction='sum')
lss.backward()
L+=lss.cpu().detach().numpy()
optimizer.step()
pred = pred.max(1)[1]
correct += pred.eq(data.y).sum().item()
s1= correct / trsize
return L/trsize,s1
def test():
model.eval()
correct = 0
Lt=0
for data in test_loader:
data = data.to(device)
pred = model(data)
lss=F.nll_loss(pred, data.y,reduction='sum')
Lt+=lss.cpu().detach().numpy()
pred = pred.max(1)[1]
correct += pred.eq(data.y).sum().item()
s1= correct / tsize
Lt=Lt/tsize
correct = 0
Lv=0
for data in val_loader:
data = data.to(device)
pred = model(data)
lss=F.nll_loss(pred, data.y,reduction='sum')
Lv+=lss.cpu().detach().numpy()
pred = pred.max(1)[1]
correct += pred.eq(data.y).sum().item()
s2= correct / vsize
Lv=Lv/vsize
return s1,Lt,s2,Lv
bval=0
btest=0
for epoch in range(1, 3001):
trloss,tr_acc=train(epoch)
test_acc,tloss,val_acc,vloss = test()
if bval<val_acc:
bval=val_acc
btest=test_acc
print('Epoch: {:02d}, train: {:.4f},{:.4f}, Val: {:.4f},{:.4f}, Test: {:.4f}, {:.4f} besttest:{:.4f} '.format(epoch,trloss,tr_acc,vloss,val_acc,tloss, test_acc,btest))