-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuseful_functions_mcmc.jl
327 lines (283 loc) · 8.36 KB
/
useful_functions_mcmc.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Packages used
using CSV, DataFrames, Plots, StatsPlots, Distributions, LinearAlgebra
using Turing, StatsFuns, Statistics, PrettyTables
# set path to working directory
# Mac
#cd("/Users/millsja/OneDrive - University of Cincinnati/Class/9011 2022")
# Windows
#cd("I:\\Econ 9011 2022")
#cd("C:\\Users\\millsjf\\OneDrive - University of Cincinnati\\Class\\9011 2022")
# Surface - local copy
#cd("C:\\Users\\millsjf\\Desktop\\Current Research\\FiESTAA_GI_AEs")
#cd("C:\\Users\\millsjf\\OneDrive for Business\\FIESTAA\\FiESTAA_GI_AEs")
function pval(vector)
pval = 2*(1 - sum(vector .< 0.0)/(size(vector,1)))
if pval > 1.0
return pval = round(2-pval,digits=4)
else
return round(pval,digits=4)
end
end
""" old version of pval function:
function pval(vector)
if typeof(vector) == Matrix{Float64}
pval = zeros(size(vector, 2))
for i = 1:size(vector, 2)
pval[i] = 2 * (1 - sum(vector[:, i] .< 0.0) / (size(vector[:, i], 1)))
if pval[i] > 1.0
pval[i] = round(2 - pval[i], digits = 4)
else
pval[i] = round(pval[i], digits = 4)
end
end
else
pval = 2 * (1 - sum(vector .< 0.0) / (size(vector, 1)))
if pval > 1.0
pval = round(2 - pval, digits = 4)
else
pval = round(pval, digits = 4)
end
end
return pval
end
"""
function linreg(x, y)
blinreg = x \ y
n = length(y)
k = length(blinreg)
res = y - x * blinreg
sse = sum(res .^ 2)
sigma2_hat = sse / (n - k)
covb = inv(x'x) * sigma2_hat
b2se = diag(sqrt.(abs.(Diagonal(covb))))
criu = blinreg .+ 1.96 .* b2se
cril = blinreg .- 1.96 .* b2se
tstats = blinreg ./ b2se
pval1 = 2.0 .* cdf.(TDist(n - k), tstats)
pval2 = 2.0 .* (1.0 .- cdf.(TDist(n - k), tstats))
pvals = minimum([pval1 pval2], dims = 2)
sst = sum((y .- mean(y)) .^ 2)
Rsq = 1.0 - sse / sst
return blinreg, b2se, tstats, pvals, Rsq, sigma2_hat, cril, criu
end
function rsquare(y, x, bhat)
res = y - x*bhat
sse = sum(res.^2)
sst = sum((y .- mean(y)).^2)
Rsq = 1.0 - sse/sst
n, k = size(x)
bic = n*log(sse/n) + k*log(n)
aic = n*log(sse/n) + 2*k
return Rsq, aic, bic
end
function print_regression(blinreg, b2se, pvals, Rsq, cril, criu, coefnames)
println(" Variable coeff s.e. pval CrI")
for i = 1:length(blinreg)
println(coefnames[i], " ", round(blinreg[i], digits = 3), " ", round(b2se[i], digits = 3), " ", round(pvals[i], digits = 4), " ", round(criu[i], digits = 4), " ", round(cril[i], digits = 4))
end
println("Rsquared = ", round(Rsq, digits = 3))
end
"""
# hpdi - Compute high density region.
Derived from `hpd` in MCMCChains.jl.
By default alpha=0.05 for a 2-sided tail area of p < 0.025% and p > 0.975%.
"""
function hpdi(x::Vector{T}; alpha=0.05) where {T<:Real}
n = length(x)
m = max(1, ceil(Int, alpha * n))
y = sort(x)
a = y[1:m]
b = y[(n - m + 1):n]
_, i = findmin(b - a)
return [a[i], b[i]]
end
# requires hpdi function:
function table(cc)
params = cc.name_map.parameters
s = size(cc.value.data)[1]
x = zeros(s, length(params))
for i in 1:length(params)
x[:, i] = parent(cc[params[i]])[:]
end
mx = round.(mean(x, dims=1)'[:], digits=3)
stx = round.(std(x, dims=1)'[:], digits=3)
px = pval(x)
qx = [round.(quantile(x[:, i], [0.025, 0.975]), digits=3) for i in 1:size(x, 2)]
hx = [round.(hpdi(x[:, i]), digits=3) for i in 1:size(x, 2)]
df = [params mx stx px qx hx]
header = ["Parameter" "Mean" "Std" "P-Val" "CI-95%" "HPD-95%"]
tab = [header; df]
(df=DataFrame(x, params), tab=pretty_table(tab[2:end, :], header=tab[1, :], alignment=:C))
# return out,tab
end
function summary_mcmc_array(coeffs, coeffnames)
if typeof(coeffs) == Vector{Float64}
m = length(coeffs)
k = 1
else
m, k = size(coeffs)
end
println(" coeff ", "mean ", "std ", "p-value ", " 0.95 interval")
for i in 1:k
bi = coeffs[:,i]
pval1 = length(bi[bi .<= 0.0])/m
pval2 = 1.0 - length(bi[bi .<= 0.0])/m
pval = round(2*minimum([pval1 pval2]), digits = 4)
println(coeffnames[i]," ", round(mean(bi), digits=3), " ", round(std(bi), digits=3), " ", pval, " ", round.(quantile(bi, [0.025,0.975]), digits = 3))
end
end
@model simple_logistic(y,X, ::Type{TV}=Vector{Float64}) where {TV} =begin
n, D = size(X)
#alpha ~ Normal(0,1)
#sig ~ Uniform(0.01,3)
#m ~ Truncated(Normal(-2,3),-999.9,0.999)
beta = TV(undef,(D))
# sd<10 too restrictive for beta coeffs
for k in 1:(D)
beta[k] ~ Normal(0, 10.0)
end
#delta ~ Normal(0,3.0)
mu = logistic.(Matrix(X) * beta)
for i in 1:n
v = Bernoulli(mu[i])
y[i] ~ v
end
end
@model simple_regression(y,X, ::Type{TV}=Vector{Float64}) where {TV} =begin
n, D = size(X)
#alpha ~ Normal(0,1)
sig ~ Uniform(0.01,10)
#m ~ Truncated(Normal(-2,3),-999.9,0.999)
beta = TV(undef,(D))
# sd<10 too restrictive for beta coeffs
for k in 1:(D)
beta[k] ~ Normal(0, 20.0)
end
#delta ~ Normal(0,3.0)
# mu = logistic.(Matrix(X) * beta)
for i in 1:n
y[i] ~ Normal(X[i,:]'*beta, sig)
end
end
### This xtlag function includes contemporaneous xt, the original Serial Correlation code function does not
function xtlag(X, laglength)
n, k = size(X)
w = zeros(n - laglength, (k) * (laglength + 1))
p = collect(1:k:(k)*(1+laglength))
for i in 1:(1+laglength)
w[:, p[i]:(p[i]+k-1)] = X[(laglength+1-i+1):(n-i+1), :]
end
return w
end
# creates lags - same as embed function in R
function embed(x, p)
n = length(x)
pp = p + 1
m = zeros(n - pp + 1, pp)
for i in 1:pp
m[:, i] = x[(pp-i+1):(n-i+1)]
end
return m
end
println("Functions loaded")
#dfmo = DataFrame(CSV.File("FiESTAA_07-20.csv")) # original data
#dfm = DataFrame(CSV.File("FiESTAA_07_20_cleaned.csv")) # cleaned data
#show(names(dfm))
#=
# example use of Turing for regression
@model lm(y, x, ::Type{TV}=Float64) where {TV} = begin
n = length(y)
sig ~ Uniform(0.001, 10.0)
b = Vector{TV}(undef, k)
[b[i] ~ Normal(0, 5) for i in 1:k]
mu = x * b
for i in 1:n
y[i] ~ Normal(mu[i], sig)
end
end
n = 50
b = [1; 1]
s = 1.0
x = [ones(n) randn(n)]
u = randn(n)
y2 = x * b .+ u
k = length(b)
# creating lags
p = 2
yp = embed(y2, p)
xt = xtlag(x, p)
X = [yp[:, 2:end] xt]
Y = yp[:, 1]
model_lm = lm(y2, x)
s = 2000
Turing.setprogress!(true)
# @time cc = sample(model, NUTS(0.65), s)
# @time cc_sc = sample(model_sc, NUTS(0.65), s)
@time cc_lm = sample(model_lm, NUTS(0.65), s)
table(cc_lm)[2]
# Is there a difference in these groups?
# What if we double the same size, but keep proportions the same?
## Drawing from beta
M = 10^6
sm = 25 *2
nm = 73 *2
sf = 13 *2
nf = 60 *2
sm/nm
sf/nf
mtrt = rand(Beta(sm+1, nm-sm+1), M)
mpbo = rand(Beta(sf+1, nf-sf+1), M)
plot(mtrt, st = :density, fill=true, alpha = 0.4, label = "treated")
plot!(mpbo, st = :density, fill=true, alpha = 0.4, label = "controls")
dif = mtrt .- mpbo
plot!(dif, st = :density, fill=true, alpha = 0.4, label = "difference")
vline!([0.0], linecolor = "black", label = false)
pval(dif)
mean(dif)
mean(mtrt)
mean(mpbo)
## SADrawing from beta
M = 10^6
sm = 2
nm = 136
sf = 13
nf = 137
sm/nm
sf/nf
mtrt = rand(Beta(sm+1, nm-sm+1), M)
mpbo = rand(Beta(sf+1, nf-sf+1), M)
plot(mtrt, st = :density, fill=true, alpha = 0.4, label = "treated")
plot!(mpbo, st = :density, fill=true, alpha = 0.4, label = "controls")
dif = mtrt .- mpbo
plot!(dif, st = :density, fill=true, alpha = 0.4, label = "difference")
vline!([0.0], linecolor = "black", label = false)
pval(dif)
mean(dif)
mean(mtrt)
mean(mpbo)
# Normal mean difference
sm = -1.34
nm = 136
msig = -(1.24 - 1.44)/2
sf = -1.21
nf = 137
fsig = -(1.11 - 1.31)/2
sm/nm
sf/nf
mtrt = rand(Normal(sm, msig), M)
mpbo = rand(Normal(sf, fsig), M)
plot(mtrt, st = :density, fill=true, alpha = 0.4, label = "treated")
plot!(mpbo, st = :density, fill=true, alpha = 0.4, label = "controls")
dif = mtrt .- mpbo
plot!(dif, st = :density, fill=true, alpha = 0.4, label = "difference")
vline!([0.0], linecolor = "black", label = false)
pval(dif)
mean(dif)
mean(mtrt)
mean(mpbo)
# three-ways to order the exact same chili:
vector = dif
sum(vector[:, 1] .< 0.0)
sum(vector .< 0.0)
length(vector[vector .< 0])
=#