-
Notifications
You must be signed in to change notification settings - Fork 943
/
Copy pathblended-tropomi-gosat-methane.yaml
40 lines (40 loc) · 1.86 KB
/
blended-tropomi-gosat-methane.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Name: Blended TROPOMI+GOSAT Satellite Data Product for Atmospheric Methane
Description: A dataset of satellite retrievals of atmospheric methane that extends from 30 April 2018 to present.
Documentation: https://github.com/nicholasbalasus/write_blended_files/blob/main/PUM.md
Contact: [email protected]
ManagedBy: Nicholas Balasus
UpdateFrequency: Monthly
Tags:
- aws-pds
- climate
- environmental
- satellite imagery
License: There are no restrictions on the use of this data, but please contact [email protected] before its use in a publication.
Citation: Please cite Balasus et al. (2023).
Resources:
- Description: Blended TROPOMI+GOSAT netCDF files
ARN: arn:aws:s3:::blended-tropomi-gosat-methane
Region: us-west-2
Type: S3 Bucket
Explore:
- '[Browse Bucket](https://s3-us-west-2.amazonaws.com/blended-tropomi-gosat-methane/index.html)'
DataAtWork:
Tutorials:
- Title: Plotting one month of blended TROPOMI+GOSAT methane retrievals
URL: https://github.com/nicholasbalasus/write_blended_files/blob/main/resources/aws_tutorial_1.ipynb
AuthorName: Nicholas Balasus
AuthorURL: https://nicholasbalasus.github.io
Services:
- SageMaker Studio Lab
- Title: Downloading the full data record from AWS
URL: https://github.com/nicholasbalasus/write_blended_files/blob/main/resources/aws_tutorial_2.ipynb
AuthorName: Nicholas Balasus
AuthorURL: https://nicholasbalasus.github.io
Services:
- SageMaker Studio Lab
Publications:
- Title: A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases
URL: https://doi.org/10.5194/amt-16-3787-2023
AuthorName: N. Balasus, D.J. Jacob, A. Lorente, J.D. Maasakkers, R.J. Parker, H. Boesch, Z. Chen, M.M. Kelp, H. Nesser, D.J. Varon
ADXCategories:
- Environmental Data