Skip to content

ModelTrainer API cannot configure the right Session #5237

@dgallitelli

Description

@dgallitelli

Describe the bug
I'm trying to train a model using the sagemaker.modules.train.ModelTrainer API. However, it keeps trying to validate the SageMaker session using Pydantic, only never to accept any possible input. It spits out the Validation Error you see in the screenshot attached below.

To reproduce

  1. Write a ModelTrainer compatible script
  2. Write the following code:
model_trainer = ModelTrainer(
    training_image=image_uri, compute=compute, source_code=source_code,
    hyperparameters=hyperparameters, environment=env,
    base_job_name=job_prefix,
    stopping_condition=StoppingCondition(max_runtime_in_seconds=90000),
    checkpoint_config=CheckpointConfig(s3_uri=f"{checkpoint_s3_path}/{job_prefix}"),
) 
model_trainer.fit(...)

Expected behavior
Training to start

Screenshots or logs

Image

System information
A description of your system. Please provide:

  • SageMaker Python SDK version: 2.248.0
  • Framework name (eg. PyTorch) or algorithm (eg. KMeans): N/A
  • Framework version: N/A
  • Python version: 3.12
  • CPU or GPU: GPU
  • Custom Docker image (Y/N): N

Additional context
Tried to downgrade to other SageMaker SDK versions, but couldn't get to a working one.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions