forked from dome272/VQGAN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
132 lines (86 loc) · 3.66 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F
from mingpt import GPT
from vqgan import VQGAN
class VQGANTransformer(nn.Module):
def __init__(self, args):
super(VQGANTransformer, self).__init__()
self.sos_token = args.sos_token
self.vqgan = self.load_vqgan(args)
transformer_config = {
"vocab_size": args.num_codebook_vectors,
"block_size": 512,
"n_layer": 24,
"n_head": 16,
"n_embd": 1024
}
self.transformer = GPT(**transformer_config)
self.pkeep = args.pkeep
@staticmethod
def load_vqgan(args):
model = VQGAN(args)
model.load_checkpoint(args.checkpoint_path)
model = model.eval()
return model
@torch.no_grad()
def encode_to_z(self, x):
quant_z, indices, _ = self.vqgan.encode(x)
indices = indices.view(quant_z.shape[0], -1)
return quant_z, indices
@torch.no_grad()
def z_to_image(self, indices, p1=16, p2=16):
ix_to_vectors = self.vqgan.codebook.embedding(indices).reshape(indices.shape[0], p1, p2, 256)
ix_to_vectors = ix_to_vectors.permute(0, 3, 1, 2)
image = self.vqgan.decode(ix_to_vectors)
return image
def forward(self, x):
_, indices = self.encode_to_z(x)
sos_tokens = torch.ones(x.shape[0], 1) * self.sos_token
sos_tokens = sos_tokens.long().to("cuda")
mask = torch.bernoulli(self.pkeep * torch.ones(indices.shape, device=indices.device))
mask = mask.round().to(dtype=torch.int64)
random_indices = torch.randint_like(indices, self.transformer.config.vocab_size)
new_indices = mask * indices + (1 - mask) * random_indices
new_indices = torch.cat((sos_tokens, new_indices), dim=1)
target = indices
logits, _ = self.transformer(new_indices[:, :-1])
return logits, target
def top_k_logits(self, logits, k):
v, ix = torch.topk(logits, k)
out = logits.clone()
out[out < v[..., [-1]]] = -float("inf")
return out
@torch.no_grad()
def sample(self, x, c, steps, temperature=1.0, top_k=100):
self.transformer.eval()
x = torch.cat((c, x), dim=1)
for k in range(steps):
logits, _ = self.transformer(x)
logits = logits[:, -1, :] / temperature
if top_k is not None:
logits = self.top_k_logits(logits, top_k)
probs = F.softmax(logits, dim=-1)
ix = torch.multinomial(probs, num_samples=1)
x = torch.cat((x, ix), dim=1)
x = x[:, c.shape[1]:]
self.transformer.train()
return x
@torch.no_grad()
def log_images(self, x):
log = dict()
_, indices = self.encode_to_z(x)
sos_tokens = torch.ones(x.shape[0], 1) * self.sos_token
sos_tokens = sos_tokens.long().to("cuda")
start_indices = indices[:, :indices.shape[1] // 2]
sample_indices = self.sample(start_indices, sos_tokens, steps=indices.shape[1] - start_indices.shape[1])
half_sample = self.z_to_image(sample_indices)
start_indices = indices[:, :0]
sample_indices = self.sample(start_indices, sos_tokens, steps=indices.shape[1])
full_sample = self.z_to_image(sample_indices)
x_rec = self.z_to_image(indices)
log["input"] = x
log["rec"] = x_rec
log["half_sample"] = half_sample
log["full_sample"] = full_sample
return log, torch.concat((x, x_rec, half_sample, full_sample))