-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_script.py
166 lines (137 loc) · 6.03 KB
/
test_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# test script
import ebola_sim
reload(ebola_sim)
import discrete_time_engine as engine
reload(engine)
import pandas as pd
import time
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import t as student_t
#import pprofile
THRESHOLD_MIN=100
THRESHOLD_MAX=1000
# THRESHOLD_RANGE=np.linspace(THRESHOLD_MIN,THRESHOLD_MAX,3)
THRESHOLD_RANGE = [1000]
TF0_MIN=1.5
TF0_MAX=4
# TF0_RANGE=np.linspace(TF0_MIN,TF0_MAX,3)
TF0_RANGE=[2]
THRESHOLD_setting=[]
TF0_setting=[]
n = 5 # how many times to aggregate
def main():
ebola_sim.settings.maxIter = 365*5
ebola_sim.settings.I0['Guinea'] = 50
# ebola_sim.settings.I0['Liberia'] = 50
# ebola_sim.settings.I0['Sierra Leone'] = 50
# ebola_sim.settings.I0['Nigeria'] = 50
# ebola_sim.settings.I0['Senegal'] = 50
# ebola_sim.settings.I0['Mali'] = 50
results = []
#profiler = pprofile.Profile()
#with profiler:
for threshold in THRESHOLD_RANGE:
for TF0 in TF0_RANGE:
ebola_sim.settings.THRESHOLD = threshold
ebola_sim.settings.TF0 = TF0
for i in range(n):
tic = time.clock()
output = engine.run(ebola_sim)
results.append(output)
toc = time.clock()
print '%02d Execution Time -- %d:%02d mm:ss'%(i, int((toc-tic)/60),int((toc-tic)%60))
aggregate(results, 'results/%s_%s_%s_%s'%(str(int(threshold)),str(int(TF0*100)),str(ebola_sim.settings.maxIter),str(n)))
#profiler.dump_stats('profile')
def aggregate(res_list, filename):
countries = res_list[0]['Country']
res = pd.concat((res_list.pop(),res_list.pop()))
while len(res_list) > 0:
pd.concat((res,res_list.pop()))
by_row_index = res.groupby(res.index)
res_ave = by_row_index.mean()
res_ave.insert(0,'Country',countries)
res_std = by_row_index.std()
res_std.insert(0,'Country',countries)
res_ave.to_csv('%s_ave.csv'%(filename))
res_std.to_csv('%s_std.csv'%(filename))
def plot_results(filestub):
'''Plots all countries data contained in the files corresponding to filestub
For example, if filestub = 'results/100_200_180_5' this corresponds to results
where THRESHOLD = 100 and TF0 = 2.00 and settings.maxIter = 180 and n = 5
'''
def lower_and_upper(means, stds, n):
lower, upper = [0]*len(means), [0]*len(means)
for i in range(len(means)):
m = means[i]
s = stds[i]
lower[i], upper[i] = student_t.interval(0.95, n, loc = m, scale = s)
return lower, upper
res_ave = pd.read_csv('%s_ave.csv'%(filestub), index_col = False)
res_std = pd.read_csv('%s_std.csv'%(filestub), index_col = False)
ave_grouped = res_ave.groupby('Country')
std_grouped = res_std.groupby('Country')
n = int(filestub.rpartition('_')[-1])
days = int(filestub.rpartition('_')[0].rpartition('_')[-1])
for country, c_ave in ave_grouped:
f, ax = plt.subplots(3,1,sharex=True)
c_std = std_grouped.get_group(country)
s_ave, s_std = np.array(c_ave['S']), np.array(c_std['S'])
e_ave, e_std = np.array(c_ave['E']), np.array(c_std['E'])
i_ave, i_std = np.array(c_ave['I']), np.array(c_std['I'])
h_ave, h_std = np.array(c_ave['H']), np.array(c_std['H'])
f_ave, f_std = np.array(c_ave['F']), np.array(c_std['F'])
r_ave, r_std = np.array(c_ave['R']), np.array(c_std['R'])
s_l, s_u = lower_and_upper(s_ave,s_std, n)
e_l, e_u = lower_and_upper(e_ave,e_std, n)
i_l, i_u = lower_and_upper(i_ave,i_std, n)
h_l, h_u = lower_and_upper(h_ave,h_std, n)
f_l, f_u = lower_and_upper(f_ave,f_std, n)
r_l, r_u = lower_and_upper(r_ave,r_std, n)
x = range(days + 1)
a = 0.2
h1, = ax[0].plot(x, s_ave, 'b')
tax = ax[0].twinx()
h2, h3, h4, h5, h6, = tax.plot(x,e_ave, 'g', i_ave, 'r', h_ave, 'y', f_ave, 'k', r_ave, 'k--')
ax[0].fill_between(x, s_u, s_l, color = 'b', alpha=a)
tax.fill_between(x, e_u, e_l, color = 'g', alpha=a)
tax.fill_between(x, i_u, i_l, color = 'r', alpha=a)
tax.fill_between(x, h_u, h_l, color = 'y', alpha=a)
tax.fill_between(x, f_u, f_l, color = 'k', alpha=a)
tax.fill_between(x, r_u, r_l, color = 'k', alpha=a)
#tax.legend(['S','E','I','H','F','R'],bbox_to_anchor=(1.05,1),loc=2,borderaxespad=0.)
#ax[0].legend(['S'], loc = 3)
tax.legend([h1,h2,h3,h4,h5,h6],['S','E','I','H','F','R'],loc=2)
tax.set_title(country.decode('utf-8'))
ax[0].set_ylabel('S')
tax.set_ylabel('E, I, H, F, R')
tax.set_ylim([0,int(max(e_ave + i_ave + h_ave + f_ave + r_ave))+1])
o_ave, o_std = np.array(c_ave['OnsetCases']), np.array(c_std['OnsetCases'])
d_ave, d_std = np.array(c_ave['Deaths']), np.array(c_std['Deaths'])
o_l, o_u = lower_and_upper(o_ave, o_std, n)
d_l, d_u = lower_and_upper(d_ave, d_std, n)
cum_o = np.cumsum(o_ave)
cum_d = np.cumsum(d_ave)
h1, = ax[1].plot(x, o_ave, 'k')
ax[1].fill_between(x, o_l, o_u, color = 'k', alpha=a)
tax1 = ax[1].twinx()
h2, = tax1.plot(x, cum_o, 'r')
tax1.set_ylabel('Cumulative')
ax[1].set_ylabel('Cases per day')
tax1.legend([h1,h2],['Per Day','Cum.'],loc=2)
ax[1].set_ylim([0,max(o_ave)+1])
tax1.set_ylim([0,max(cum_o)+1])
h1, = ax[2].plot(x, d_ave, 'k')
ax[2].fill_between(x, d_l, d_u, color = 'k', alpha=a)
tax2 = ax[2].twinx()
h2, = tax2.plot(x, cum_d, 'r')
tax2.set_ylabel('Cumulative')
tax2.legend([h1,h2],['Per Day','Cum.'], loc=2)
ax[2].set_ylabel('Deaths per day')
ax[2].set_xlabel('Day')
ax[2].set_ylim([0,max(d_ave)+1])
tax2.set_ylim([0,max(cum_d)+1])
plt.tight_layout()
plt.show()
if __name__=='__main__':
main()